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 SYSTEMS OF PARTICLES 

EXERCISES 

Section 9.1 Center of Mass 

 12. INTERPRET This one-dimensional problem involves finding the center of mass of a system with two objects 

(child and father). 

DEVELOP In one dimension, Equation 9.2 for the center of mass reduces to 

cm
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Taking the origin of the coordinate system to be at the child (who we denote with subscript 1), we have x1 = 0 and 

m1 = 28 kg. The center of the seesaw is then at xcm = 3.5/2 m = 1.75 m (where we retain an extra significant figure 

because this is an intermediate result). The position of the father is the unknown, and is labeled x2. The mass of the 

father is m2 = 65 kg. 

EVALUATE Inserting the known quantities into the expression for center of mass gives  
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from the child. 

ASSESS The algebra was simplified somewhat by choosing the origin of the coordinate system to be at under the 

child’s posterior. Because x2 < 3.5 m, the father can sit on the seesaw and balance it with his daughter. If 2 1m m , 

then x2 = xcm, because it does not really matter where the child sits if the father weighs a ton! 

 13. INTERPRET This is a two-dimensional problem about the center of mass. Our system consists of three masses 

located at the vertices of an equilateral triangle. Two masses are known and the location of the center of mass is 

given, so we can find the location of the third mass. 

DEVELOP The center of mass of a system of particles is given by Equation 9.2: 
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We shall choose x-y coordinates with origin (0,0) at the midpoint of the base. With this arrangement, the center of 

the mass is located at xcm = 0 and ycm = y3/2, where y3 is the position of the third mass (and, of course, y1 = y2 = 0 for 

the equal masses m1 = m2 = m on the base).  

EVALUATE Using Equation 9.2, the y coordinate of the center of mass is  
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Solving for m3, we have 3 32 2 ,m m m+ =  or 3 2 .m m=  

ASSESS From symmetry consideration, it is apparent that xcm = 0. However, we have m + m = 2m at the bottom 

two vertices of the triangle. Because cm 3/2y y=  (i.e., cmy is halfway to the top vertex), we expect the mass there to 

be 2m (See Example 9.2). 

 14. INTERPRET This is a one-dimensional problem in which we are asked to find the location of the center of mass of 

a two-body system.  

DEVELOP With the origin at the center of the barbell, x1 = –75 cm and x2 = 75 cm. Use Equation 9.2 to find the 

center of mass. 

EVALUATE (Evaluating Equation 9.2 gives 

( ) ( ) ( ) ( )
cm

50 kg 75 cm 80 kg 75 cm
17 cm

50 kg 80 kg
x

− +
= =

+
 

to two significant figures. 

ASSESS We find that the center of mass is 17 cm from the center toward the heavier mass, or 75 cm + 17 cm = 92 

cm from the light mass. This agrees with the result of Example 1. 

 15. INTERPRET This two-dimensional problem is about locating the center of mass. Our system consists of three 

equal masses located at the vertices of an equilateral triangle of side L. 

DEVELOP We take x-y coordinates with the origin at the center of one side as shown in the figure below. The 

center of mass of a system of particles is given by Equation 9.2: 
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EVALUATE From the symmetry (for every mass at x, there is an equal mass at –x) we have xcm = 0. As for ycm, 

because y = 0 for the two masses on the x-axis, and ( )3 sin 60 3 2y L L= ° =  for the third mass, Equation 9.2 

gives  
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ASSESS From symmetry consideration, it is apparent that xcm = 0. On the other hand, we have m + m = 2m at the 

bottom two vertices of the triangle, and m at the top of the vertex. Therefore, we should expect ycm to be one third 

of y3. This indeed is the case, as ycm can be rewritten as ycm = y3/3. 

 16. INTERPRET This is a one-dimensional problem for which we need to find the center of mass of a two-body 

system.  

DEVELOP Take the origin to be at the center of the Earth (see drawing below), and apply Equation 9.2 for the 

center of mass. From Appendix E, we know that the Earth-Moon distance is r = 3.85 × 105 m, ME = 5.97 Mkg, and 

MM = 0.0735 Mkg.  
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EVALUATE Measured from the center of the Earth, the center of mass of the Earth-Moon system is  

( ) ( )
( )

5
E M

cm
E M

7.35 Mkg 3.85 10  km(0)
4680 km

597 Mkg 7.35 Mkg
M M r

x
M M

×+
= = =

+ +
 

ASSESS Notice that we are not obliged to use SI units, provided all masses are expressed in the same units so that 

the units of mass cancel out. 

Section 9.2 Momentum 

 17. INTERPRET This problem involves conservation of linear momentum (Equation 9.7), which we can apply to find 

the speed of one out of two particles that separate after an explosion, given the speed of the other particle and mass 

of both particles.  

DEVELOP Before the explosion, the popcorn kernel has zero momentum, ( )1 2 0m m v+ = . After the explosion, 

the total momentum of the two particles must still sum to zero, so we have 1 1 2 2 0m v m v+ = . Thus, 

 1
2 1

2

m
v v

m
=  

so we can solve for v2 given m1 = 91 mg, m2 = 64 mg, and v1 = (47 m/s) î . 

EVALUATE Inserting the given quantities gives ( ) ( ) ( )2
ˆ ˆ91 mg 64 mg 47 cm/ 67 cm/ssv i i= − = − . 

ASSESS Notice that the smaller piece moves faster than the larger piece. Also notice that total mechanical energy 

is not conserved because K0 = (m1 + m2)v2 = 0 and 2 2
1 1 2 2 0K m v m v= + ≠ . 

 18. INTERPRET The object of interest is the skater. We want to find her velocity after she tosses a snowball in a 

certain direction.  

DEVELOP On frictionless ice, momentum would be conserved in the process. Since the initial momentum of the 

skater-snowball system is zero, their final total momentum must also be zero: 
 1 1 2 20 m v m v= +  

where subscripts 1 and 2 refer to the snowball and skater, respectively. 

EVALUATE By momentum conservation, the final velocity of the skater is 

 ( )1
2 1

2

12 kg ˆ ˆ ˆ ˆ53.0 14.0 m/s 10.6 2.8  m/s
60 kg

m
v v i j i j

m
= − = − + = − −  

ASSESS As expected, the skater moves in the opposite direction of the snowball. This is a consequence of 

momentum conservation. 

 19. INTERPRET This problem involves conservation of linear momentum (Equation 9.7), which we can apply to find 

the speed of one out of two particles that separate after an explosion, given the speed of the other particle and mass 

of both particles.  

DEVELOP Before the explosion, the uranium atom has zero momentum, so ( )1 2 0m m v+ = . After fission, the 

total momentum of the two particles must still sum to zero, so we have 235 235U U
0m v m vα α + = . Thus, 

235

235
U

U

m
v v

m
α

α=  

The initial speed can be obtained from the kinetic energy, ˆ ˆ2 2v K m i K m iα α α α α= ± ≡ ,so we can solve for 

235U
v  using data from Appendix D for the masses of the particles. 

EVALUATE Solving for 235U
v  gives 
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ASSESS  Because 25.15 MeV << 3.73 Gev,K m cα α= =  relativity can be ignored. 

 20. INTERPRET This problem involves using conservation of linear momentum to find the final speed of a moving 

toboggan after some snow drops onto it.  

DEVELOP Because there is no net external horizontal force, the total momentum of the snow-toboggan system is 

conserved. The initial momentum of the system is .i t tiP m v=  Because the snow and the toboggan move together 

with the same speed ,fv  the final momentum is ( ) .f t s fP m m v= +  

EVALUATE By conservation of momentum, ,i fP P= the final speed of the toboggan-snow system is  

( )8.6 kg 23 km/h 8.4 km/h
8.6 kg 15 kg

t
f ti

t s

m
v v

m m
= = =

+ +
 

ASSESS To see that our result makes sense, let’s consider the following limiting cases: (i) 0.sm = In this situation, 

we have ,f tiv v=  which indicates that the toboggan continues with the same speed. (ii) .sm → ∞ In the situation 

where a large quantity of snow is dumped onto the toboggan, we expect the system to slow down considerably, 

which is indeed is what our equation gives (vf = 0).  

Section 9.3 Kinetic Energy of a System 

 21. INTERPRET In this problem we are asked about the energy gained by the baseball pieces after the baseball 

explodes. We can apply conservation of linear momentum to solve this problem. 

DEVELOP Applying conservation of linear momentum to the baseball gives  

( )i f 1 2 0 1 1 2 2P P m m v m v m v= ⇒ + = +  

The initial kinetic energy of the system is ( ) 21
1 2 02 ,iK m m v= +  and the total final kinetic energy is 

2 21 1
f 1 1 2 22 2 .K m v m v= +  Therefore, the change in kinetic energy is  

( ) ( ) ( )2 2 2 2 2 2 2
f i 1 1 2 2 1 2 0 1 1 0 2 2 0

1 1 1 1 1
2 2 2 2 2

K K K m v m v m m v m v v m v vΔ = − = + − + = − + −  

EVALUATE Let the forward direction be positive. By conservation of momentum, the velocity of the second 

piece, with mass 2 1 150 g 38 g 112 g,m m m= − = − =  is  

( ) ( ) ( ) ( ) ( )1 2 0 1 1
2

2

150 g 60 km/h 38 g 85 km/h
51.5 km/h 14.3 m/s

112 g
m m v m v

v
m

+ − −
= = = =  

In SI units 0 16.67 m/sv =  and 1 23.6 m/s,v =  so the difference in kinetic energy is  

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2
1 2 1 1 0 2 2 0

2 2 23 3 2

1 1
2 2

1 138 10 kg 23.6 m/s 16.7 m/s 112 10 kg 14.3 m/s 16.7 m/s 0
2 2
1.21 J

K K K m v v m v v

− −

Δ = Δ + Δ = − + −

⎡ ⎤ ⎡ ⎤= × − + × −⎣ ⎦ ⎣ ⎦

=

 

ASSESS The change in kinetic energy for the first piece (ΔK1) is positive because v1 > v0, but negative for the 

second (ΔK2 < 0 because v2 < v0). 

 22. INTERPRET Before an explosion, an object has kinetic energy 1 2
i2 .K mv=  After the explosion, it has two pieces 

( 1m and 2m ) each moving at twice the initial speed, f i2 .v v=  We are asked to find and compare the internal and 

center-of-mass energies after the explosion.  

DEVELOP After the explosion, the final kinetic energy is a combination of the center-of-mass and internal 

energies: f cm intK K K= + (Equation 9.9). We assume that the explosion is like the radioactive decay in Example 

9.6, in which case momentum is conserved. But we can't assume that 1 2 ,m m= which means the direction that the 

two pieces fly off relative to the original direction is unknown. But we don't need to know these quantities to find 

the final kinetic energy: 
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 ( ) ( ) ( )2 21 1 1 1 12 2 2
f 1 1f 2 2f 1 i 2 i i2 2 2 2 22 2 4 4K m v m v m v m v mv K= + = + = =  

where we have assumed that the mass is conserved: 1 2 .m m m+ =  

EVALUATE Because momentum is conserved, the center-of-mass velocity is constant: cm i ,v v= which implies that 

the kinetic energy of the center of mass is the same as the kinetic energy before the explosion, cm .K K=  Plugging 

this into Equation 9.9, we find int f cm 3 .K K K K= − =  In other words, the internal kinetic energy is 3 times the 

center-of-mass energy.  

ASSESS If one did assume that the two pieces have equal mass, then the angle, ,θ  between the initial and final 

velocity would be the same for each piece, see the figure below. 

 
In this case, both particles would have the same speed relative to the center of mass:  

 ( ) ( )2 22 2
rel f cm i i i2 3v v v v v v= − = − =  

And the internal energy would be  

 ( )1 1 1 12 2 2 2
int rel 1 rel 2 rel i2 2 2 23 3i iK m v m v m v mv K= = + = =∑  

This is exactly what we found for the general case above.  

Section 9.4 Collisions 

 23. INTERPRET Your asked to compare the impulse during a collision to the impulse of gravity over the same time 

period. 

DEVELOP An impulse is a change in momentum produced by a force acting on an object over a specific time 

period. The gravitational force will be constant over the time of the collision, so we can find the gravity's impulse 

on each spacecraft using Equation 9.10a: .gJ F t p= Δ = Δ  

EVALUATE We're not concerned with the direction of the impulse, but just the magnitude: 

 ( ) ( ) ( )2 3140 kg 8.7 m/s 120 10 s 146 N sJ mg t −= Δ = × = ⋅  

The impulse imparted by gravity is 0.08% of the collision impulse. 

ASSESS During the collision, the influence of gravity can be neglected. That's because the average force from the 

collision is very large: / 1.5 MN.F J t= Δ =  

 24. INTERPRET We want to determine the average force and impulse acting on a jumping flea. 

DEVELOP We're given the average acceleration during the jump, so the ground must supply an average force on 

the flea of F ma=  is just multiplied by the flea's mass. We can then use Equation 9.9a ( )J F t p= Δ = Δ  to find 

the impulse imparted by the ground and the resulting momentum change for the flea. 

EVALUATE (a) The average force exerted by the ground on the flea is 

 ( ) ( )9 2 4220 10 kg 100 9.8 m/s 2.16 10 N 220 NF ma μ− −= = × ⋅ = ×  

(b) Multiplying the average force by the time gives the impulse: 
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 ( ) ( )4 72.16 10 N 1.2 ms 2.6 10 N sJ F t − −= Δ = × = × ⋅  

(c) The momentum change for the flea is equal to the impulse provided by the floor: 

 7 72.6 10 N s 2.6 10 kg m/sp J − −Δ = = × ⋅ = × ⋅  

Notice that we can write the momentum change in units ( )kg m/s⋅ that might be more familiar for momentum. 

ASSESS If we assume the flea starts its jump from rest, then at the end of its jump it reaches a velocity of 

/ 1.2 m/s.v v p m= Δ = Δ =  That seems reasonable. 

 25. INTERPRET You need to determine how to fire a rocket to obtain the needed impulse. 

DEVELOP We're given the average thrust, so the needed time comes from Equation 9.9a: / .t J FΔ =   

EVALUATE For the required impulse, the space probes rocket must fire for  

 3

5.64 N s 41.8 s
135 10 N

Jt
F −

⋅Δ = = =
×

 

ASSESS This might seem like a long time for such a small impulse. But the rocket exerts a tiny force on the space 

probe. Often, spacecraft need precision thrusters like the one here to make small adjustments in their trajectory or 

orientation.  

Section 9.5 Totally Inelastic Collisions 

 26. INTERPRET This problem involves conservation of total linear momentum. We are to use it to find the final 

momentum of a two-car system. In addition, we are to find the change in kinetic energy of the two-car system after 

they couple.  

DEVELOP If we assume the switchyard track is straight and level, the collision is one-dimensional, totally 

inelastic, and Equation 9.11 applies, so  

1 1 2 2 1 1 2 2
f

1 2 1 2

ˆm v m v m v m v
v i

m m m m
+ +

= ≡
+ +

 

Once we have found the final velocity vf, we can insert it into the expression for the change in kinetic energy to 

find the fraction of kinetic energy lost. 

EVALUATE (a) Inserting the given quantities into the expression for vf gives 

( ) ( ) ( ) ( ) ( )f

56 ton 7.0 mi /h 31 ton 2.6 mi /h ˆ ˆ5.4 mi /h
56 ton 31 ton

v i i
+

= =
+

 

(b) The initial and final kinetic energies are 

( ) ( ) ( ) ( ) ( )2 2 21
i 2 56 T 7.0 mi/h 31 T 2.6 mi/h 1477 T mi/h ;K ⎡ ⎤= + =⎣ ⎦   

( ) ( ) ( )2 21
f 2 56 31  T 5.43 mi/h 1284 T mi/hK = + =  

where we retained more significant figures than warranted by the data because these are intermediate results. The 

fraction of kinetic energy lost is ( ) 13%f i iK K K− = − . 

ASSESS Notice that we did not need to change to SI units for part (b) because we took the ratio of initial and final 

kinetic energies. Thus, provided we use the same units for the initial and final kinetic energies, the answer will be 

correct. 

 27. INTERPRET In this problem, we are asked to show that half of the initial kinetic energy of a system is lost in a 

totally inelastic collision between two equal masses.  

DEVELOP Suppose we have two masses m1 and m2 moving with velocities 1v  and 2 ,v  respectively. After 

undergoing a totally inelastic collision, the two masses stick together and move with final velocity .fv  Although 

the collision is totally inelastic, momentum conservation still applies, and we have (Equation 9.11): 

( ) 1 1 2 2
1 1 2 2 1 2 f f

1 2

m v m v
m v m v m m v v

m m
+

+ = + ⇒ =
+
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The initial total kinetic energy of the two-particle system is 2 21 1
1 1 2 22 2 ,iK m v m v= +  whereas the final kinetic energy 

of the system after collision is ( ) 21
1 22f fK m m v= + . Therefore, the change in kinetic energy is given by 

( ) ( ) ( )2 2 2 2 2 2 2
f i 1 2 f 1 1 2 2 1 f 1 2 f 2

1 1 1 1 1
2 2 2 2 2

K K K m m v m v m v m v v m v vΔ = − = + − − = − + −  

 
 
EVALUATE In our case, we have m1 = m2 = m, v1 = v, and v2 = 0. The initial kinetic energy of the system is 

therefore 21
2 .iK mv= The final speed is  

1 1 2 2
f

1 2

1
2

m v m v mvv v
m m m m

+
= = =

+ +
 

Therefore, the change in total kinetic energy is 

( ) ( )
2 2

2 2 2 2 2 2
1 f 1 2 f 2

1 1 1 1 10
2 2 2 4 2 4 4

v vK m v v m v v m v m mv
⎛ ⎞ ⎛ ⎞

Δ = − + − = − + − = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

Thus, we see that half of the total initial kinetic energy is lost in the collision process. 

ASSESS For a totally inelastic collision, one may show that the general expression for ΔK is  

( )
( ) ( )

2
21 1 2 2 2 2 1 2

1 1 2 2 1 2
1 2 1 2

1 1 1
2 2 2 2
m v m v m m

K m v m v v v
m m m m

+
Δ = − − = − −

+ +
 

Clearly, ΔK is always negative, and it depends on the relative speed between m1 and m2. 

 28. INTERPRET This is a two-dimensional problem that involves conservation of linear momentum. We are to find 

the initial velocity of one particle, given the initial velocity of the other, the final velocity of the combined 

particles, and the masses of each.  

DEVELOP Apply conservation of linear momentum, Equation 9.11, for a totally inelastic collision, and solve for 

the velocity of the deuteron. 

EVALUATE Inserting the given quantities into Equation 9.11 and solving for vd gives 

( ) ( ) ( )t t n n
d

d

ˆ ˆ ˆ ˆ3 u 12 20 1 u 28 17 Mm ˆ ˆ4 22  Mm/s
2 u s

i j i jm v m v
v i j

m
+ − + ⎛ ⎞= = = +⎜ ⎟⎝ ⎠

−
 

to two significant figures. 

ASSESS The change in kinetic energy in the collision is  

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2 2 2
t t d n

1 1 1 1 12 20 3 4 21.5 2 28 17 1 400 u Mm/s
2 2 2 2

K m v mv mv ⎡ ⎤Δ = − − = + − + − + ≈ −⎣ ⎦  

which is negative, indicating that energy is stored in the tritium (i.e., is converted to mass). We can regain this 

energy by splitting tritium, which is the basis of the hydrogen bomb. 

 29. INTERPRET This is a totally inelastic collision, since the trucks move together as one after they hit. You should 

be able to find the mass of the second truck using conservation of momentum. 

DEVELOP According to Equation 9.11, conservation of momentum in the truck collision implies 

 ( )1 1 2 2 1 2 fm v m v m m v+ = +  

EVALUATE The first truck is at rest ( )1 0 ,v = which means the final velocity has to be in the same direction as 2 .v  

Given that the first truck has a mass of 1 5500 kg 3800 kg 9300 kg,m = + = we can solve for the mass of the 

second: 

 ( )f
2 1

2 f

40 km/h9300 kg 14,880 kg
65 km/h 40 km/h

v
m m

v v
= = =

− −
 

Subtracting the mass of the truck leaves a load of 9400 kg, so the second truck was overloaded by 1400 kg. 

ASSESS If the truck had been loaded at the permissible limit of 8000 kg, the final velocity after the collision 

would have been 38 km/h.  
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Section 9.6 Elastic Collisions 

 30. INTERPRET This one-dimensional problem involves an elastic collision between two particles, the Au nucleus 

and the alpha particle. We are to find the fraction of the alpha particle’s kinetic energy that is transferred to the Au 

nucleus.  

DEVELOP Because this problem is one-dimensional, we can apply Equation 9.15b to find the final velocity of the 

alpha particle. We can then use this result to find the final kinetic energy of the alpha particle in order to calculate 

the fraction of kinetic energy lost to the Au nucleus. 

EVALUATE With m1 =4u, m2 = 197 u, and v2i = 0, we find that 

( ) ( ) ( )2 1 12 4.00 u 4.00 197  u 8.00/201 .f i iv v v= + = The fraction of the initial energy transferred is 

( )
( )

221
2f2

1i 2f 21
1i2

197 u 197 8.00 7.80%.
4.00 2014.00 u

v
K K

v
⎛ ⎞= = =⎜ ⎟⎝ ⎠

  

ASSESS We retain three significant figures in the answer because we know the data to three significant figures. 

 31. INTERPRET This problem is about head-on (i.e. one-dimensional) elastic collisions. We want to find the speed of 

the ball after it rebounds elastically from a moving car. 

DEVELOP Both mechanical energy and linear momentum are conserved in an elastic collision. In this one-

dimensional case, conservation of linear momentum gives 

1 1i 2 2i 1 1f 2 2fm v m v m v m v+ = +  

Conservation of energy gives 

2 2 2 2
1 1i 2 2i 1 1f 2 2f

1 1 1 1
2 2 2 2
m v m v m v m v+ = +  

Using the two conservation equations, the final speeds of m1 and m2 are (see Equations 9.15a and 9.15b): 

1 2 2
1f 1i 2i

1 2 1 2

1 2 1
2f 1i 2i

1 2 1 2

2

2

m m m
v v v

m m m m
m m m

v v v
m m m m

−
= +

+ +
−

= +
+ +

 

EVALUATE Let the subscripts 1 and 2 be for the car and the ball, respectively. We choose positive velocities in 

the direction of the car. The speed of the ball after it rebounds is 

( ) ( )1 2 1
2f 1i 2i 1i 2i

1 2 1 2

2
2 2 14 m/s 18 m/s 46 m/s

m m m
v v v v v

m m m m
−

= + ≈ − = − − =
+ +

 

where we have used 1 2m m .  

ASSESS  Similarly, the final speed of the car is  

1 2 2
1f 1i 2i 1i

1 2 1 2

2
14 m/s

m m m
v v v v

m m m m
−

= + ≈ =
+ +

 

We do not expect the speed of the car to change much after colliding with a ball. However, the ball rebounds with 

a much greater speed than before. If the car were stationary with 1 0,iv =  then we would find 2 2 18 m/s.f iv v= − =  

 32. INTERPRET This problem involves a one-dimensional elastic collision between two masses, so conservation of 

mechanical energy and conservation of linear momentum applies. We are asked to find how the masses are related 

given that the objects have the same speed after colliding.  

DEVELOP Apply Equations 9.15a and 9.19b and solve for M, given that v2i = 0. We are also told that the blocks 

have the same speed after the collision, so we know that v2f = –v1f, where we have inserted the negative sign 

because the blocks must move in opposite directions if this is an elastic collision. 

EVALUATE Equations 9.15a and 9.15b give 



Systems of Particles  9-9 

 
© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may 

be reproduced, in any form or by any means, without permission in writing from the publisher. 

1f 1i

2f 1i
2

m Mv v
m M
mv v

m M

−
=

+

=
+

 

Using v2f = –v1f, we find 

1i 1i
2

3

m M mv v
m M m M

M m

−
= −

+ +
=

 

ASSESS After the collision, the larger block will have three times the kinetic energy of the smaller block. 

 33. INTERPRET In this problem we are asked to find the speeds of the protons after they collide elastically head-on. 

The problem is thus one-dimensional and involved conservation of mechanical energy and linear momentum. 

DEVELOP Consider the general situation where two masses m1 and m2 moving with velocities 1v  and 2 ,v  

undergo elastic collision. Both momentum and energy are conserved in this process. Using the conservation 

equations, the final speeds of m1 and m2 are (see Equations 9.15a and 9.15b): 

1 2 2
1f 1i 2i

1 2 1 2

1 2 1
2f 1i 2i

1 2 1 2

2

2

m m m
v v v

m m m m
m m m

v v v
m m m m

−
= +

+ +
−

= +
+ +

 

EVALUATE We choose positive velocities to be in the direction of 1.v  With m1 = m2 = m, and v1 = v = 11 Mm/s, 

and v2 = –v1 = –v = –11 Mm/s, the final speeds are  

1 2 2
1f 1i 2i 2i

1 2 1 2

1 2 1
2f 1i 2i 1i

1 2 1 2

2
11 Mm/s

2
11 Mm/s

m m m
v v v v v

m m m m
m m m

v v v v v
m m m m

−
= + = = − = −

+ +
−

= + = = =
+ +

 

ASSESS In this case, the protons simply exchange places—the final speed of the first proton is equal to the initial 

speed of the second proton, while the final speed of the second proton is equal to the initial speed of the first proton. 

 34. INTERPRET This one-dimensional problem involves an elastic collision, so we can apply conservation of 

mechanical energy and linear momentum. 

DEVELOP Apply Equations 9.15a and 9.15b to find the requisite relationships. We are given that v1i = –v21 = v, v1f 

= 0, and m1 > m2. 

EVALUATE (a) Equations 9.15a and 9.15b lead to 

1 2 2

1 2 1 2

1 2 2

1

2

2
0

2

3

m m m
v v

m m m m
m m m

m
m

−
= −

+ +
− =

=

 

(b) The final speed of the less massive particle is  

1 1 2
2

1 2 1 2

2 6 2 2
4 4f

m m m
v v v v v

m m m m
− ⎛ ⎞= + = + =⎜ ⎟⎝ ⎠+ +

 

ASSESS We know that the initial speeds must be in the opposite direction because that is the only way that they 

could collide head on given that the magnitude of their speeds are the same. 

PROBLEMS 

 35. INTERPRET In this problem we want to find the center of mass of a pentagon of side a with one trianglular 

section missing. 
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DEVELOP We choose coordinates as shown in the figure below. If the fifth isosceles triangle (with the same 

uniform density as the others) were present, the center of mass of the whole pentagon would be at the origin, so  

5 cm 5 cm4 4
0

5 5
my my y y

m
+ +

= =  

where ycm gives the position of the center of mass of the figure we want to find, and y5 is the position of the center 

of mass of the fifth triangle. Of course, the mass of the figure is four times the mass of the triangle.  

EVALUATE From symmetry, the x coordinate of the center of mass is cm 0.x = Now, to calculate ycm, we make use 

of the result obtained in Example 9.3 where the center of mass of an isosceles triangle is calculated. This gives y5 = 

–2L/3.In addition, from the geometry of a pentagon, we have tan(36°) = a/(2L). Therefore, the y coordinate of the 

center of mass is 

( )cm 5
1 cot 36 0.115
4 6 12

L ay y a= − = = ° =  

a

x

y

36
(0,y5)

L

 
ASSESS From symmetry argument, the center of mass must lie along the line that bisects the figure. With the missing 

triangle, we expect it to be located above 0,y = which would have been the center of mass for a complete pentagon.  

 36. INTERPRET This problem concerns stopping a charging rhino with rubber bullets that lose all their momentum 

when they hit the animal. 

DEVELOP The impulse imparted on the rhino by one bullet is equal to the rhino's change in momentum (Equation 

9.10a: b rJ p= Δ ). But we don't know the mass of the rhino, so it is easier to deal with the bullets. Their change in 

momentum is equal and opposite to the change in momentum of the rhino: r b .p pΔ = −Δ Note that we've dropped 

the vector notation, since the momenta are collinear, but we'll assume that the bullets are initially moving in the 

positive direction. We're given the initial velocity of the bullets, and we know that they fall straight to the ground 

after impact, so their final velocity must be zero. Putting all this together, we have:  

 ( )b r b b b0 b b00J p p m v m v= Δ = −Δ = − − =  

We can find the mass of the rhino by calculating the total impulse supplied by all the bullets fired at the rhino: 

tot b b .J N J=  This total impulse is what supposedly brings the rhino to rest: tot r,tot r r0 r r00 .J p m v m v= Δ = − = − The 

minus sign is not a problem, since the rhino's initial velocity is negative compared to the positive velocity of the 

bullets. 

EVALUATE (a) From the expression above, the impulse imparted by one bullet is 

 ( ) ( )b b b0 20 g 73 m/s 1.46 kg m/s 1.5 N sJ m v= = = ⋅ ⋅  

(b) To find the mass of the rhino, we first need to calculate the number of bullets, which is the rate the gun is fired 

multiplied by the time: 

 ( ) ( )b 15 bullets/s 34 s 510 bulletsN rt= = =  

The mass can then be found from the total impulse from all these bullets: 

 ( ) ( )
( )

r,tot b b
r

r0 r0

510 1.46 kg m/s
920 kg

0.81 m/s
p N J

m
v v

Δ ⋅
= = = =

− − − −
 

ASSESS The answer is reasonable for a black rhino. But note that white rhinos have typically twice this mass.  
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 37. INTERPRET We are asked to calculate the center-of-mass motion of a three body system. 

DEVELOP The position of the center of mass is given by Equation 9.2: cm / .i ir m r M=∑  In this case, the masses 

are all equal, ,im m=  so the total mass is 3 .M m=  Once we find the center-of-mass position, the velocity and 

acceleration can be found through differentiating. 

EVALUATE The mass term divides out, so the center-of-mass position is the sum of the three given vectors: 

 ( ) ( )1 1 10 7 2 82
cm 3 3 3 3 3 3

ˆ ˆ ˆ ˆ
i i ir r a i b j t t i t j⎡ ⎤= = + = + + + +⎣ ⎦∑ ∑ ∑  

 

The center-of-mass velocity is the first derivative: 

 ( ) ( )10 2cm
cm 3 3

ˆ ˆ2
dr

v t i j
dt

= = + +  

The center-of-mass acceleration is the second derivative: 

 ( )cm
cm

ˆ2
dv

a i
dt

= =  

ASSESS The acceleration is constant and in the x-direction. This is due to the 2t -term in the position of the 

particle 1. There must be a force that accelerates this particle, and correspondingly accelerates the center of mass.  

 38. INTERPRET We are asked about the motion of the boat, but the problem is fundamentally related to the center of 

mass of the system.  

DEVELOP This problem is similar to Example 9.4. Take the x axis to be horizontal from bow to stern, with the 

origin at the center of mass (CM) of the boat and people. In the absence of external horizontal forces like friction, 

the CM remains stationary. Thus  

p pi B Bi p pf B Bf0 m x m x m x m x= + = +  

where Bix  is the initial position of the CM of the boat, Bfx  is its final position, and pix and pfx  are the initial and 

final position of the people. Note that pi 0,x <  Bi 0,x >  pf 0,x >  and Bf 0.x <  This equation can be rewritten as  

( ) ( )B Bi Bf p pf pim x x m x x− = −  

since Bi Bfx x−  is the distance the boat moves relative to the fixed CM. The distances are related to the dimensions 

of the boat, since the length of the boat is equal to 

pi Bi Bf pf pf pi Bi Bf| |  | | 6.5 mx x x x x x x x+ + + = − + − =  

EVALUATE Substituting into the first equation, one finds 

( ) ( )B Bi Bf p Bi Bf6.5 mm x x m x x⎡ ⎤− = − −⎣ ⎦  

Thus, we find  

( ) ( )p
Bi Bf

p B

1500 kg6.5 m 6.5 m 72 cm
1500 kg 12,000 kg

m
x x

m m
− = = =

+ +
 

to two significant figures, which is the precision of the data. Note that we did not have to assume that the CM of 

the boat was at the center of the boat. 

 
ASSESS The boat’s displacement of 72 cm is less than the distance the people walked. This makes sense because 

the boat is much more massive than the people.  
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 39. INTERPRET This problem involves the center of mass of a two-body system, which remains stationary in the 

absence of external horizontal forces.  

DEVELOP When the mouse starts at the rim, the center of mass of the mouse-bowl system has x component: 

( ) ( ) ( )cm b b m m b m m b mx m x m x m m m R m m= + + = +  

since initially xb = 0 and xm = R. Because there is no external horizontal force (no friction), xcm remains constant as 

the mouse descends. When it reaches the center of the bowl, the center of mass of the system is 

( ) ( ) ( ) ( )cm b b m m b m b m10 10b mx m x m x m m m d m d m m= + + = + +′ ′  

Because the center of mass does not move, we can equate these two expressions for the center of mass to find the 

ratio of mb to mm. 

 
EVALUATE Using the fact that 2R = d, we find 

( ) ( ) ( )m b m b m5 5
4

b m

b m

m R m m m R m R m m
m m

+ = + +
=

 

ASSESS The bowl is 4 times more massive than the mouse, which makes sense because the bowl has been 

horizontally displaced. 

 40. INTERPRET This problem involves the impulse exerted on a needle shot into the body in order to obtain a sample 

of internal organs. 

DEVELOP The needle starts at rest and is accelerated by the force of the spring. We don't know this force or how 

long it is applied, but we know that the momentum gain from the spring, ,pΔ is lost when the needle is stopped by 

the skin. To say it another way, the impulse imparted by the spring is equal but opposite to the impulse imparted by 

the skin's stopping force. And we have the information needed to calculate the impulse from the skin: skin .J F t= Δ  

For part (b), to determine the penetration distance, we take the acceleration of the needle as the force of the tissue 

acts on it: n n/ .a F m=  Since this acceleration is constant, we can use the formalism from Chapter 2.  

EVALUATE (a) As explained above, the impulse imparted by the spring has the same magnitude as the impulse 

imparted by the skin: 

 ( ) ( )spring skin 41 mN 90 ms 3.7 mN sJ J F t= = Δ = = ⋅  

(b) As far as we can tell, the force and corresponding acceleration are constant. The initial speed of the needle (just 

before entering the skin) must have been 0 n ,v a t= Δ  and the distance travelled through the body is (Equation 2.10) 

 ( )
( ) ( )21 2 2

0 n2
n

41 mN
90 ms 20 cm

2 2 8.3 mg
Fx v t a t t
m

Δ = Δ − Δ = Δ = =  

where we have been careful to treat the acceleration as a deceleration. 

ASSESS A distance of 20 cm is fairly long but presumably necessary to sample internal organs. 

 41. INTERPRET In this problem we are asked to find the center of mass of a uniform solid cone. We will need to 

integrate thin slices of the cone to find the answer. 

DEVELOP Choose the z axis along the axis of the cone, with the origin at the center of the base (see figure 

below). Because the cone is symmetric about the z axis, the center of mass is on the z axis [for each mass element 

at position (x, y, z) there is an equal mass element at position (–x, –y, z), so the integral over x and y gives zero]. 

Thus, we only need to find the z coordinate of the center of mass, so Equation 9.4 reduces to  

cm

zdm
z

M
= ∫  
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For the mass element dm, take a disk at height z and of radius ( )1r R z h= −  that is parallel to the base. Then 

( )22 2 1dm r dz R z h dzρπ ρπ= = −  where ρ is the density of the cone, and 21
3M R hρπ=  is the total mass of the 

cone.  

R

h
}dy

dm

x

y

 
EVALUATE For the z coordinate of the center of mass, the integral above gives  

( )22
cm 2

0 0

2 3 2 2 2

2
0

1 3 1

3 2 3 2 1
2 3 4 4

h h

h

z z dm z R z h dz
M R h

z z h h hz dz h
h h hh

ρπ
ρπ

= = −

⎛ ⎞ ⎛ ⎞
= − + = − + =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫ ∫

∫
 

so the complete center of mass coordinate is (0, 0, h/4). 

ASSESS The result makes sense because we expect zcm to be closer to the bottom of the cone because more mass 

is distributed in this region.  

 42. INTERPRET This problem involves conservation of linear momentum, which we can use to find the mass and the 

direction of motion of the second firecracker fragment.  

DEVELOP Apply conservation of linear momentum. Because the firecracker is initially at rest, the initial 

momentum of the system is zero. After the explosion (ignoring air resistance and relativistic effects), the total 

linear momentum is still zero, and is expressed as  

1 1 2 20 m v m v= +  

where m1 = 14 g, ( )1
ˆ48 m/sv i= , and 2 32 m/sv = .  

EVALUATE  Because mass is always positive, we know that the direction of 2v  is opposite to 1v , so 

( )2
ˆ32 m/sv i= − , so the direction of motion is î− , or opposite to the direction of 1v . Evaluating the expression 

for total linear momentum gives m2 = –m1v1/v2 = –(14 g)(48 m/s)/(–32 m/s) = 21 g. 

ASSESS We find that the slower-moving mass is greater than the faster-moving mass, as expected. 

 43. INTERPRET We are asked about the compression of the spring due to a totally inelastic collision. 

DEVELOP Since the total momentum of the system is conserved in the process, we have 
 i f 1 1 1 2 f( )P P m v m m v= ⇒ = +  

The potential energy of the spring at maximum compression equals the kinetic energy of the two-car system prior 

to contact with the spring: 2 21 1
max 1 2 f2 2 ( ) .kx m m v= +  

For (b), we note that when the cars rebound, they are coupled together and both have the same velocity. Since the 
spring is ideal (by assumption), its maximum potential energy, 21

max2 ,k x  is transformed back into kinetic energy of 

the cars. 
EVALUATE (a) The second car is initially at rest so 2 0.v = By momentum conservation, the speed of the cars after 

collision is 

 1 1
f

1 2

(9,400 kg)(8.5 m/s) 3.92 m/s
11,000 kg 9, 400 kg

m v
v

m m
= = =

+ +
 

which leads to 
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 1 2
max f 6

11,000 kg 9, 400 kg(3.92 m/s) 0.99 m
0.32 10 N/m

m m
x v

k
+ +

= = =
×

 

(b) The spring's potential energy is converted back into the kinetic energy of the cars, so the rebound speed should 

be the same (only in the opposite direction) as the speed prior to the spring being compressed: 
 reb f 3.9 m/sv v= =  

where we only keep the significant figures.  

ASSESS During the collision in the first part of the motion, the momentum is conserved but energy is not. 

However, during the spring compression and release in the second part, energy is conserved. Therefore, the cars 

rebound with the same speed as that before coming into contact with the spring. 

 44. INTERPRET This one-dimensional problem involves an inelastic collision on a frictionless surface, so kinetic 

energy is not conserved, but total linear momentum is conserved. We can use this to find the speed of the 

three-vehicle wreckage. 

DEVELOP Assume that the road is horizontal and the velocities are collinear. By conservation of linear 

momentum, we can equate the total linear momentum before and after the collision. Before the collision, the total 

momentum of the three vehicles is p = m1v1 + m2v2 + m3v3. After the accident, we have p = (m1 + m2 + m3) v. 

EVALUATE Equating the two expressions for total linear momentum, we find 

( ) ( ) ( ) ( ) ( ) ( )

1 1 2 2 3 3

1 2 3

1200 kg 50 km/h 4400 kg 35 km/h 1500 kg 65 km/h
44 km/h1200 kg 4400 kg 1500 kg

m v m v m v
v

m m m
+ +

=
+ +

+ +
= =+ +

 

ASSESS Notice that the truck has increased its speed, whereas the cars have reduced their speed, as expected. 

 45. INTERPRET This problem involves the Newton’s second law in the form of Equation 9.6. We can use this to find 

an expression for the initial acceleration of the car due to the water jet that bounces off its rear window, and to find 

the final speed of the car. 

DEVELOP Draw a diagram of the situation (see figure below). Consider the initial situation, when the car is at 

rest. From Equation 9.6, we know that the force exerted on the car by the water is the negative of the rate of change of 

momentum of the water: 

w
c

d pF
dt

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

Let the water momentum be pw = mv0, where v0 is the speed of the water with respect to the road. When the car is at 

rest, this speed is the same before and after reflecting off the car’s rear window. In this case, 

( ) ( ) ( ) ( ) ( )w w
w w 0 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆd p dpd d dmp j p i j i mv j i v j i
dt dt dt dt dt

⎛ ⎞ = − = − = − = −⎜ ⎟⎝ ⎠
 

Thus, the initial force exerted on the car by the water jet is 

( )w
c 0

ˆ ˆd p dmF v i j
dt dt

⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

 

If we apply Newton’s second law net cF dp dt=  to the car, it reduces to net cF Ma= , because the car’s mass does 

not change. The net force acting on the car is simply the horizontal component of cF , because its vertical 

component is simply canceled by an increase in the normal force exerted on the car by the road. Thus,  

net c 0 c
ˆ ˆdmF F i v i Ma

dt
= ⋅ = =  
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F$c

p$i

Dp$
p$f

Car windshield
î

ĵ

 
EVALUATE (a) Solving Newton’s second law for the acceleration ac of the car gives 

0
c

ˆv dma i
M dt

⎛ ⎞= ⎜ ⎟⎝ ⎠
 

(b) When the car starts moving, the change in the water’s momentum is reduced because the speed v′ of the water 

in the frame of reference of the car is reduced according to v′ = v0 – vc, where vc is the car’s speed. The acceleration 

thus becomes 

0 c
c

ˆ ˆv vv dm dma i i
M dt M dt

−′ ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

Thus, when vc = v0, the car will no longer accelerate, so the final velocity of the car is v0. 

ASSESS As expected, the acceleration of the car increases with the water speed v0 and the water mass rate dm/dt, 

but decreases with M, the mass of the car.  

 46. INTERPRET This two-dimensional problem involves the principle of conservation of linear momentum in an 

inelastic two-body collision. We can apply this principle to find the final velocity of the two-body system after the 

collision. 

DEVELOP If there are no external horizontal forces acting on the car-wagon system, momentum (in the x-y plane) 

is conserved, so  

( )
i f

1 1 2 2 1 2

p p
m v m v m m v

=

+ = + .
  

which we can solve for the final velocity v . 

EVALUATE Inserting the given quantities into the expression above gives 

( ) ( ) ( ) ( )
( ) ( )

ˆ ˆ ˆ ˆ950 kg 32 17 m/s 450 kg 12 14  m/s
ˆ ˆ26 16  m/s

950 450  kg

i j i j
v i j

+ + +
= = +

+
 

ASSESS The magnitude of this velocity is 2 2 31 m/sx yv v v= + = , and its direction is ( )atan 32y xv vθ = = °  

with respect to the x axis. 

 47. INTERPRET This is a head-on elastic collision where the initial speed, ,v  is the same for both objects. 

DEVELOP For a one-dimensional collision like this, Equation 9.14 applies: 1i 2i 2f 1f .v v v v− = −  In this case, 

1i 2i ,v v v= = −  so we have 2f 1f 2 .v v v− =   

EVALUATE Plugging 2f 1f2v v v= +  into the one-dimensional conservation of momentum equation (Equation 

9.12a):  

 ( ) ( ) ( ) ( )1 2 1 1f 2 1f 1 2 1 2 1f 1f2      m m v m v m v v m m v m m v v v− = + + → + = − + → = −  

And 2f ,v v=  using the previous relation. So the final speed of each object is equal (but opposite to the initial 

speed). 

ASSESS Do the minus signs makes sense in the derivation? Let's assume the first object approaches from the left 

with positive velocity, and it bounces off to the left in the negative direction. The second object does the exact 

opposite, approaching from the right with negative velocity and bouncing back with positive velocity. 
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 48. INTERPRET This is a two-dimensional problem that involves conservation of linear momentum. The quantity of 

interest is the recoil velocity of the thorium nucleus, produced from the decay of the 238U nucleus. 

DEVELOP Because no external forces are acting on the system (ignoring gravity), linear momentum is conserved, 

as in Example 9.6. Equating the initial and final momenta gives 

U U He He Th Thm v m v m v= +  

In terms of the x and y components, this vector equation gives the following two scalar equations:  

U U He He, Th Th, He He Th Th

He He, Th Th, He He Th Th

cos cos ( component)

0 sin sin ( component)
x x

y y

m v m v m v m v m v x
m v m v m v m v y

φ θ
φ θ

= + = +

= + = +
 

These equations can be used to solve for the magnitude and direction of TH .v  

EVALUATE Solving the two equations, we obtain 

( ) ( ) ( ) ( )5 7
5U U He He

Th, Th
Th

238 u 5 10  m/s 4 u 1.4 10 m/s cos 22cos
cos 2. 9 10 m/s

234 ux
m v m v

v v
m

θθ
× − × °−

= = = = ×  

and 

( ) ( )7
4He He

Th,y Th
Th

4 u 1.4 10 m/s sin 22sin
sin 9.0 10 m/s

234 u
m v

v v
m

φθ
× °

= = − = − = − ×  

to two significant figures. Thus the recoil velocity of the thorium atom is 

( ) ( )5 4
Th

ˆ ˆ2.9 10 m/s 9.0 10 m/sv i j= × − × , or 2 2 5
Th Th, Th, 3.0 10 m/x yv v v= + = ×  and the direction is 

( )Th, Th,atan 17 .y xv vθ = = − °  

ASSESS The fact thatθ is negative tells us that the velocity of the thorium atom is downward, as expected to 

compensate for the upward velocity of the alpha particle. 

 49. INTERPRET This problem involves finding the center of mass of an object composed of several parts (walls, base, 

and silage).  

DEVELOP Here it’s convenient to find the centers of mass of sub-parts and then treat these parts as point particles 

to find the center of mass of the entire object. With no information about the geometry of the base, we will assume 

its an infinitely thin disk with the same diameter as the silo. Use a coordinate system with the origin at the center of 

the cylinder’s base and the z axis running along the center of the silo cylinder. Because the system is symmetric 

about the z axis, the different centers of mass must lie along the z axis. 

EVALUATE (a) To find the center of mass when the silo is empty, find the center of mass of the cylindrical wall 

and base separately, and then treat the problem as if the mass of each object were concentrated at their respective 

center-of-mass points. By symmetry, the z coordinate of the center of mass of the wall must be at half the height, or 
wall
cm 15 mz = . The z coordinate of the center of mass of the base is at base

cm 0 mz = because it is infinitely thin. 

Inserting these results into Equation 9.2 to find the center of mass of the empty silo gives 

( ) ( ) ( ) ( )4 3wall base
silo wall cm base cm
cm 4 3

3.8 10  kg 15 m 6 10  kg 0
13 m

3.8 10  kg 6 10  kg
m z m z

z
M

× + ×+
= = =

× + ×
 

so the complete coordinates of the center of mass are (0, 0, 13 m), to two significant figures. 

(b) Treat the empty silo and silage as if their entire mass were concentrated at their respective center-of-mass 

points. We found the center of mass of the empty silo in part (a). The z coordinate of the center of mass of the 

silage is halfway up its 20-meter height, so silage
cm 10 mz =  and the silage’s mass is 

( ) ( ) ( )2 3 2 5
silage silage silage silage 800 kg/m 4 m 20 m 2.01 10  kgm V r hρ ρ π π= = = × × = ×  

Inserting these results into Equation 9.2 gives  

( ) ( ) ( ) ( )4 5
silo cm silage cm

cm 4 5

4.4 10  kg 13 m (2.01 10  kg 10 m
11 m

4.4 10  kg 2.01 10  kg

silo silage
silage m z m z
z

M
× + ×+

= = =
× + ×

 

to two significant figures. Thus, the complete coordinates of the center of mass are (0, 0, 11 m). 
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ASSESS When the silage is added, the center of mass is lowered, as expected because the silage fills from the 

bottom of the silo. 

 50. INTERPRET This problem is about conservation of linear momentum. The object of interest is the firecracker that 
has exploded into three pieces. With the mass and velocity of two pieces given, we can use conservation of linear 
momentum to find the velocity of the third piece. 
DEVELOP The instant after the explosion (before any external forces have had any time to act appreciably) the 
total momentum of the three-body system (i.e., the three firecracker fragments) is still zero. Expressed 
mathematically, this is 

tot 1 1 2 2 3 30P m v m v m v= = + +  

which we can solve to find 3.v  

EVALUATE The mass of the third piece is 3 1 2 42 g 12 g 21 g 9 g.m m m m= − − = − − =  Its velocity is  

( )( ) ( )( ) ( ) ( )1 1 2 2
3

3

ˆ ˆ12 g 35 m/s 21 g 29 m/s ˆ ˆ47 m/s 68 m/s
9 g
i jm v m vv i j

m
++

= − = − = − +  

ASSESS Since the initial momentum of the firecracker is zero, we expect the momentum of the third piece to 

completely cancel the momentum of the first two pieces. Thus, 3v  has components that are opposite to 1v  and 2 .v  

Since m3 is smaller than m1 and m2, we expect the magnitude of 3v  to be greater than the magnitudes of 1v  and 2 .v  

 51. INTERPRET No external forces act on the three-body system, so total linear momentum is conserved. We can use 

this to find the velocity of the camera discarded by the astronaut.  

DEVELOP In the rest frame of the astronaut (i.e., in the inertial frame of reference in which the astronaut is at 

rest), the total momentum of the three-body system is zero. After the astronaut discards the two items, the total 

momentum must still be zero, so  

1 1 2 2 3 3 0m v m v m v+ + =  

where the subscripts 1, 2, and 3 refer to the astronaut, the air canister, and the camera, respectively. Decomposing 

this vector equation into two scalar equations gives 

( ) ( )
( ) ( )

1 1 2 2 3 3,

1 1 2 2 3 3,

cos 200 cos 0 0

sin 200 sin 0 0

x

y

m v m v m v

m v m v m v

+ + =

+ + =
 

which we can solve for 3v . 

EVALUATE Solving first for the x component of the camera’s velocity, we find 

( ) ( ) ( ) ( ) ( )
3

60 kg 0.85 m/s cos 200 14 kg 1.6 m/s
4.4 m/s

5.8 kgxv
° +

= − =  

Similarly, the y component is 

( ) ( ) ( )
3

60 kg 0.85 m/s sin 200
3.0 m/s

5.8 kgyv
− °

= =  

So the velocity of the camera is ( ) ( )3
ˆ ˆ4.4 m/s 3.0 m/sv i j= +  

ASSESS Alternatively, we can express the result in terms of the magnitude and direction of the velocity. This 

gives 2 2
3 4.4 3.0 m/s 5.3 m/sv = + =  and θ3 = atan(3.0 ms/4.4 ms) = 34° counter-clockwise from the x axis. 

 52. INTERPRET Before an explosion, an object has kinetic energy 1 2
i2 .K mv=  After the explosion, it has two pieces: 

each with mass of 1
2 ,m  and each moving at twice the initial speed, f i2 .v v=  We are asked to find the angles at 

which two pieces of an object fly off from the explosion.  

DEVELOP Let's assume that the original object was moving in the x-direction, with no momentum in the y-

direction. After the explosion, conservation of momentum implies that the y-momentum of the two pieces sums to zero:  
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 ( ) ( ) ( ) ( )1 1
i 1 i 22 2 component:   0 2 sin 2 siny m v m vθ θ= +  

For THE y components to cancel, the angles that each piece makes with the x-axis are equal and opposite: 

1 2 .θ θ= −  

EVALUATE To find the value of these angles, we consider the momentum in the x-direction: 

 ( ) ( ) ( ) ( )1 1
i 1 i 22 2 component:   2 cos 2 cosix mv m v m vθ θ= +  

This reduces to 1
1 2cos ,θ = which means the angles are 60° and –60°. 

ASSESS In this case, the speed relative to the center of mass is just the y-component of their velocity: 

( ) o
rel i i2 sin 60 3 .v v v= = This implies that the internal energy would be 

 ( ) ( ) ( ) ( ) ( )2 21 1 1 1 1 12 2
int rel i i i2 2 2 2 2 23 3 3 3i iK m v m v m v mv K= = + = =∑  

This AGREES with the result in Problem 9.22.  

 53. INTERPRET This one-dimensional problem involves conservation of linear momentum and relative motion. We 

can use the former to find the speed of the sprinter with respect to the cart and the latter to find her speed relative to 

the ground.  

DEVELOP We choose a coordinate system in which the cart moves in the î−  direction, and the sprinter runs in 

the î  direction. The initial momentum of the system is 

( )s c cmp m m v= +  

The final momentum of the system is 

c c c cs sp m v m v m v= + =  

because she has zero velocity with respect to the ground (vs = 0). Equating these two expressions for total linear 

momentum (by conservation of total linear momentum), we have  

( )s c cm s s c c c cm m v m v m v m v+ = + =  

Using Equation 3.7 to express the sprinter’s speed relative to the cart, we have 

s rel c

rel c

v v v
v v

= +
= −

 

because vs = 0. We are given vcm = –7.6 m/s, mc = 240 kg, and ms = 55 kg. 

EVALUATE Solving the equations above for vrel, we find 

( )
( ) ( ) ( )

s c cm c c c rel

s c cm
rel

c

55 kg 240 kg 7.6 m/s
9.3 m/s

240 kg

m m v m v m v

m m v
v

m

+ = = −

+ + −
= − = − =

 

ASSESS The fact that the sprinter accelerates by pushing against the cart accelerates the cart from –7.6 m/s to –9.3 

m/s, which is reasonable. 

 54. INTERPRET This problem involves exerting a force on a conveyor belt to compensate for the change in 

momentum caused by the drops of cookie dough that drop onto the belt. 

DEVELOP If the conveyor belt is horizontal and moving with speed v = 50 cm/s and the mounds of dough fall 

vertically, then the change in the horizontal momentum due to each mound of mass Δm is ( ) .p m vΔ = Δ  The 

average horizontal force needed is equal to the rate at which mounds are dropped (a number N in time ,tΔ or N/Δt) 

times the change in momentum due to a single mound. Thus, for this problem Equation 9.6 takes the form  

( )av
N NF p m v
t t

⎛ ⎞ ⎛ ⎞
= Δ = Δ⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠

 

EVALUATE Inserting the values given in the problem statement, we find that the average force the conveyor belt 

exerts on a cookie sheet is 
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( ) ( ) ( ) 3
av

1 0.012 kg 0.50 m/s 3.0 10 N
2 s

NF m v
t

−⎛ ⎞ ⎛ ⎞
= Δ = = ×⎜ ⎟ ⎜ ⎟Δ⎝ ⎠ ⎝ ⎠

 

ASSESS The average force is just the total change in momentum, ( ) ,P N p N m vΔ = Δ = Δ  divided by the time, 

Δt. The greater is the change in momentum over a given time interval, the greater is the average force. 

 55. INTERPRET We're asked to find the speeds of two objects following their head-on elastic collision. 

DEVELOP The collision is one-dimensional, so Equations 9.15(a) and 9.15(b) are relevant. The information that 

we're given is that 1 ,m m= 1i 2 ,v v= 2 4 ,m m=  and 2i .v v=  Notice that both objects are initially moving in the 

same (positive) direction.  

EVALUATE Plugging the parameters into Equations 9.15, 

 
( ) ( ) ( )

( ) ( )

1f

2f

2 44 6 8 22
4 4 5 5 5

2 4 4 3 72
4 4 5 5 5

mm mv v v v v
m m m m
m m mv v v v v

m m m m

− −⎛ ⎞= + = + =⎜ ⎟⎝ ⎠+ +
− ⎛ ⎞= + = + =⎜ ⎟⎝ ⎠+ +

 

ASSESS The first object loses some momentum from the collision ( )1i 1f ,v v< whereas the second object gets a 

"push" from the collision ( )2i 2f .v v>  Notice that 1f 2f ,v v< otherwise it wouldn't make sense how the first object 

got ahead of the second object. 

 56. INTERPRET We're asked to verify that the final speeds that we found in the previous problem obey conservation 

of energy.  

DEVELOP The conservation of energy in a collision is expressed in Equation 9.13.  

EVALUATE The initial kinetic energy is: 

 ( ) ( )21 1 1 12 2 2 2
1 1i 2 2i2 2 2 22 4 4m v m v m v m v mv+ = + =  

Using the results from the previous problem we have for the final kinetic energy: 

 ( ) ( ) ( ) ( )2 21 1 1 2 1 7 4 1962 2 2 2
1 1f 2 2f2 2 2 5 2 5 50 504 4m v m v m v m v mv mv+ = + = + =  

So yes, the energy is conserved in this collision. 

ASSESS Although both objects have the same kinetic energy initially, the second particle leaves the collision with 

most of the kinetic energy. 

 57. INTERPRET This problem involves conservation of momentum applied to a two-body system. The center of mass 

of this system does not move because of conservation of momentum. We will apply these principles to find the 

initial angle at which we threw the rock and the speed at which you must be moving. 

DEVELOP We choose a coordinate system in which your initial position is at the origin (see figure below). Apply 

Equation 3.15 to find the angle θ at which you throw the rock,  

( )
2
0

1 sin 2
v

x
g

θ=  

with x1 = 15.2 m – x2 and v0 = 12.0 m/s. We can find x2 because we know the center of mass of the two-body 

system does not change since there are no horizontal forces acting on it. Thus, 

1 1 2 2
cm

1 2

1 1
2

2

0
m x m x

x
m m

m x
x

m

+
= =

+

= −
 

so 
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1 1
1

2

1
1 2

15.2 m

15.2 m
1

m x
x

m

x
m m

= −

=
+

 

which allows us to solve Equation 3.15 for the angle θ. To find the speed at which you move after throwing the 

rock, apply conservation of linear momentum. Your initial horizontal momentum is zero, so your final momentum 

must also be zero, or 

1 1 2 2 0x xm v m v+ =  

where 1 0 cosxv v θ= , with θ being the angle with respect to the horizontal at which you throw the rock. Solve this 

equation for v2x, which is the speed at which you move as a result of throwing the rock. 

 
EVALUATE (a) Inserting the known quantities into Equation 3.15 and solving for θ gives 

( )
( )

( ) ( )
( ) ( ) ( )

2
1
2 2 2
0 1 2 0

15.2 m 9.8 m/s15.2 m1 1 1asin asin asin 37.7
2 2 21 1 4.50 kg 65.0 kg 12.0 m/s

gx g
v m m v

θ
⎛ ⎞⎛ ⎞⎛ ⎞

= = = =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠ ⎡ + ⎤⎝ ⎠⎣ ⎦
 

(b) The speed at which you recoil after throwing the rock is 

( ) ( ) ( )1 1 1 0
2

2 2

4.50 kg 12.0 m/s cos 37.7cos
65.8 cm /s

65.0 kg
x

x
m v m v

v
m m

θ
= − = − = − = −  

ASSESS The horizontal speed of the rock is v0cos(θ) = 9.50 m/s. Thus, your recoil speed is much less than the 

rock’s horizontal speed, as expected. 

 58. INTERPRET The problem asks about the speed of the drunk driver just before a totally inelastic collision. Energy 

is not conserved in this process, but momentum is. 

DEVELOP If the wreckage skidded on a horizontal road, the work-energy theorem requires that the work done by 

friction be equal to the change of the kinetic energy of both cars, or Wnc = ΔK (see Equation 7.5). Since  

nc k k k 1 2( )W f x nx m m gxμ μ= − = − = − +  

and  

( ) 21
1 22K m m vΔ = − +  

where v is the speed of the wreckage immediately after collision, we are lead to 

21
2k gx vμ =  

The equation can be used to solve for v. Once v is known, we can apply momentum conservation to find the initial 

speed of the drunk driver. 

EVALUATE From the above, we find the speed of the cars (wreckage) just after the collision is 

2 kv gxμ=  

Momentum is conserved the instant of the collision, so if v1 is the speed of the drunk driver’s car just before the 

collision (and v2 = 0 for the parked car), then ( )1 1 1 2m v m m v= +  or  

( ) ( ) ( )21 2 1 2
1

1 1

1600 kg 1300 kg2 2 0.77 9.8 m/s 25 m 35 m/s
1600 kgk

m m m m
v v gx

m m
μ+ + += = = =  

This is about 79 mi/h, so the driver was speeding as well as intoxicated. 

ASSESS The answer makes sense because increasing 1v will result in a greater wreckage speed v, and thus a longer 

skidding distance x.  
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 59. INTERPRET This two-body problem involves kinematics (Chapters 2 and 3) and motion of the center of mass. 

The rockets explodes into two equal-mass fragments at its peak height, which we can calculate from the kinematic 

equations of Chapter 2.We are given the time it takes from the explosion for one fragment to hit the ground and are 

asked to find the time at which the second fragment hits the ground. 

DEVELOP At the peak of the rocket’s trajectory (just before the explosion), its center-of-mass y velocity is zero, 

or cm 0v = . The motion of the center of mass is unaffected by the explosion, so just after the explosion, the 

velocity cm 0v =′ . Expressing the center of mass velocity in terms of the velocities v1 and v2 of fragments 1 and 2 

gives 

1 2
cm

1 2

0
mv mv

v
m m

v v

+
= =′

+
= −

 

where the equal-mass fragments each have mass m. We can now use the kinematic equations to find v1. The height 

h at which the rocket explodes may be found using Equation 2.11, which gives (with a slight change in notation) 
0

2
cm 0

2
0

2

2

v v gh
v

h
g

=

= −

=
 

where v is the velocity at the peak of the trajectory and v0 = 40 m/s. Knowing the height and the time t1 for 

fragment 1 to hit the ground, we can find its initial velocity from Equation 3.13. This gives 

2
0 1 1 1

2 2 22
0 1 01 1

1
1 1 1

1
2

2 22
2 2

h

y y v t gt

v g gt vh gt gt
v

t t gt

=−

− = −

− + −− +
= = = +

 

Knowing v1 (and thus v2), we can find the time for fragment 2 to hit the ground by using the same Equation (i.e., 

3.13), but solving for the time instead of the velocity. This gives 

2
2 2 2

2 22 2
1 1 02 2 1 1

2

1
2

2 2

h v t gt

v v vv v gh v v gh
t

g g g

− = −

− ± +± + − ± +
= = =

 

EVALUATE Evaluating first v1, we find 

( )
( ) ( )

( ) ( )2 22
0 1

1 2
1

9.81 m/s 2.87 s40 m/s
14.38 m/s

2 2 22 9.81 m/s 2.87 s
v gt

v
gt

−−
= + = + = −  

where we have retained one extra significant figure because this is an intermediate result. Inserting this result into 

the expression for t2 gives 

( ) ( ) ( )
( )

2 22 2
1 1 0

2 2

14.38 m/s 14.38 m/s 40 m/s
5.80 s, 2.87 s

9.81 m/s
v v v

t
g

− − ± − +− ± +
= = = −  

The physically significant result is t2 = 5.80 s. 

ASSESS The time for fragment 2 to reach the ground will increase with increasing |v1|, which is reasonable 

because if fragment 1 has a larger downward velocity initially, then fragment 2 has a larger initial upward velocity. 

Also, note that if v1, v2 → 0, then t2 = t1 = 4.08 s, which is intermediate between 2.87 s and 5.80 s, as expected. 

 60. INTERPRET In this problem, a totally inelastic collision results in half of the kinetic energy being lost. We are 

asked to find the ratio of the masses.  

DEVELOP The particles come at each other with equal but opposite velocities ( )1 2 .v v= −  In order to obey 
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conservation of momentum (Equation 9.11), the final velocity has to be parallel to the initial velocities. In other 

words, the problem is one-dimensional: 

 ( ) ( ) 1 2
1 1 2 1 1 2 1 1 2 f f

1 2

    
m m

m v m v m m v m m v v v
m m

−
− = − = + → =

+
 

EVALUATE We're told the initial kinetic energy is twice the final kinetic energy: 

 ( ) ( )1 1 1 1 12 2 2 2
1 1 2 2 1 2 1 2 f f2 2 2 2 2

2     m v m v m m v m m v v v⎡ ⎤+ = + = + → = ±⎣ ⎦  

We'll choose the positive root, which plugged into the above relation gives: 

 ( )2
1

2

2 1 2 1 5.8
2 1

m
m

+
= = +

−
 

ASSESS What about the negative root? If we choose it instead, we get the inverse of our result: 

( )2

1 2/ 1/ 2 1 .m m = +  Since it wasn't specified which mass was bigger, both answers are correct. 

 61. INTERPRET In this two-body problem we are asked to find the relative speed between the satellite and the booster 

after the given impulse. We can apply conservation of momentum because there are no external forces acting on 

the system. Finally, this will be a one dimensional problem because we are dealing with only two bodies, so their 

relative motion must be linear to satisfy conservation of momentum. 

DEVELOP By Newton’s third law, the explosion applies a force of equal magnitude to each body (satellite and 

booster), but in the opposite direction. We therefore have s bJ J= − , where the subscripts s and b refer to the 

satellite and booster, respectively, and s b 350 N sJ J= = ⋅ . As explained for Equation 9.10b, an impulse J is 

equal to the change of momentum: ,J p m v= Δ = Δ  which allows us to find the speed of the satellite and the 

booster in the (stationary) center-of-mass frame. The relative speed of separation is rel s bv v v= − . 

EVALUATE Initially both the satellite and the booster are at rest. After explosion, their velocities are  

s s b b s
s b

s s b b b

p J p J J
v v

m m m m m
Δ Δ −

= = = = =  

Thus, the relative speed of separation is 

s s
s b

s b s b

1 1 1 1| | (350 N s) 0.92 m/s
950 kg 640 kgs

J J
v v J

m m m m
⎛ ⎞ ⎛ ⎞

− = + = + = ⋅ + =⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

ASSESS The relative speed is shown to depend on Js, the magnitude of the impulse. The greater the impulse, the 

faster the satellite and the booster separate from each other. 

 62. INTERPRET You have to calculate the impulse imparted by a force that is not constant.  

DEVELOP The impulse of a variable force requires integration (Equation 9.10b): ( ) .J F t dt= ∫   

EVALUATE The rocket's thrust is one dimensional, so we can drop the vector notation. Integrating the given force 

equation over the burn time gives 

 ( ) 1 1 13 2 3
3 2 600

t t
J at t t dt at at t a t

Δ Δ
= − Δ = − Δ = − Δ∫  

Plugging in the given values: 

 ( ) ( )31 2
6 4.6 N/s 2.8 s 17 N sJ = − − = ⋅  

Yes, the rocket meets its specs. 

ASSESS The thrust starts at zero, then rises to a peak at 1
2t t= Δ where 1 2

4F a t= − Δ (recall a is negative), before 

falling back to zero at .t t= Δ We could get a rough estimate of the impulse by assuming that the average force is 

approximately equal to half of the peak value ( )1 2
8 .F a t− Δ∼  Multiplying by the time the force is applied gives: 

1 3
8 ,J a t− Δ∼ which isn't too far off from the precise result above. 
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 63. INTERPRET This two-dimensional problem asks for the speed of one of two vehicles just before its totally 

inelastic collision with the second vehicle. Given the road condition (i.e., the coefficient of kinetic friction), we 

want to show that the speed of one of the cars exceeded 25 km/h. Energy is not conserved in this process, but 

momentum is. Furthermore, because work is done by friction, this problem involves the work-energy theorem. 

DEVELOP If the wreckage skidded on a horizontal road, the work-energy theorem requires that the work done by 

friction be equal to the change of the kinetic energy of both cars. Wnc = ΔK (see Equation 7.5). Because 

( )nc k k k 1 2 ,W f x nx m m gxμ μ= − = − = − +  and ( ) 21
f i 1 220 ,K K K m m vΔ = − = − +  where v is the speed of the 

wreckage immediately after collision, we are led to  

2
k

1
2

gx vμ =  

Therefore, the speed of the wreckage just after the collision is k2 .v gxμ= ±  Next, momentum conservation 

requires that the initial and final momentum are the same, so 

( )1 1 2 2 1 2

1 1 2 2

1 2

m v m v m m v
m v m v

v
m m

+ = +
+

=
+

 

where v  is the initial velocity of the wreckage. To find the change in kinetic energy, we need to calculate the 

scalar product v v⋅ : 

( ) ( )

( )

2 1 1 2 2 1 1 2 2

1 2 1 2

0
2 2 2 2
1 1 2 2 1 2 1 2

2 2
1 2 1 2

2 2 2 2
1 1 2 2

2
1 2

2

m v m v m v m v
v v v

m m m m

m v m v m m v v
m m m m

m v m v
m m

=

⎛ ⎞ ⎛ ⎞+ +
= ⋅ = ⋅⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

+ ⋅
= +

+ +

+
=

+

 

where we have used the fact that the scalar product 1 2 0v v⋅ =  because the initial velocities are perpendicular to 

each other. In the next step, we insert the maximum speed for one car to find the minimum speed for the other car. 

EVALUATE Inserting k2v gxμ= ±  into the above expression for the initial velocity of the wreckage leads to 

( )
2 2 2 2

2 1 1 2 2
k2

1 2

2
m v m v

v gx
m m

μ+
= =

+
 

Solving for 1v gives 

( )2 2 2
k 1 2 2 2

1 2
1

2 gx m m m v
v

m
μ + −

=  

where we have taken the positive square root. Consider now the following situations:  

Let subscript 1 correspond to the Toyota 2 to the Buick. If the speed of the Buick is v2 = 25 km/h = 6.94 m/s, then 

the speed of the Toyota would be 

( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2
k 1 2 2 2

1 2
1

2 2 22

2

2

2 0.91 9.8 m/s 22 m 1200 kg 2200 kg 2200 kg 6.94 m/s
(1200 kg)

55 m/s 200 km/h

gx m m m v
v

m
μ + −

=

+ −
=

= =

 

Thus, we conclude that the speed of the Toyota exceeded 25 km/h. 

(2) Here, we reverse the assignment of the subscripts 1 and 2. If the speed of the Toyota is v2 = 25 km/h = 6.94 m/s, 

then the speed of the Buick would be 
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( )

( ) ( ) ( ) ( ) ( ) ( )
( )

2 2 2
k 1 2 2 2

1 2
1

2 2 22

2

2

2 0.91 9.8 m/s 22 m 2200 kg 1200 kg 1200 kg 6.94 m/s

2200 kg

30 m/s 110 km/h

gx m m m v
v

m
μ + −

=

+ −
=

= =

 

Thus, we conclude that the speed of the Buick exceeded 25 km/h. 

From the analysis above, we conclude that if one car is going at 25 km/h, then the other one must have been 

speeding, so at least one car must have been speeding. 

ASSESS If we knew the direction of the wreckage velocity, we could easily find the car that was speeding. 

 64. INTERPRET This one-dimensional problem considers an explosion on a horizontal frictionless surface, so 

momentum is conserved because there are no horizontal forces acting on the popcorn. Kinetic energy is not 

conserved because the explosion does work on the popcorn fragments, so the work-energy theorem tells us that the 

kinetic energy must change (see Equation 7.5). 

DEVELOP By conservation of momentum, we can equate the initial and final momenta, which gives 

( )0 1 2 1 2

0

0 1 2

2 0

2

2
2

mv mv mv m v v

v v v
v v

=

= + = +

= +
=

 

where m = 200 g, and we have arbitrarily chosen fragment 1 to be the one with zero velocity after the explosion. 

Knowing the initial and final speeds, we can find the initial and final kinetic energies and so calculate the change 

in kinetic energy ΔK = Kf – Ki: 

( )
0

2 2 2
0 1 2

2 2
0 2

1 1 12
2 2 2

1
2

K m v mv mv

K mv mv

=⎛ ⎞
⎜ ⎟Δ = − +⎜ ⎟
⎜ ⎟⎝ ⎠

Δ = −

 

EVALUATE Inserting the v2 = 2v0 into the expression for ΔK and evaluating the result gives 

( ) ( ) ( )2 22 2 6
0 0 0

1 2 200 10 kg 0.082 m/s 1.3 μ J
2

K mv m v mv −Δ = − = − = − × = −  

ASSESS We find that the kinetic energy of the system decreases, as expected, because the explosion does work on 

the system by pushing the fragments apart, and the work-energy theorem tells us that this work must come at the 

expense of the system’s kinetic energy. 

 65. INTERPRET This two-dimensional problem involves a totally inelastic collision, so momentum is conserved but 

kinetic energy is not conserved. We can use conservation of momentum to find the angle between the initial 

velocities before a the collision.  

DEVELOP The collision between the two masses is totally inelastic. Conservation of momentum tells us that  

( )1 1 2 2 1 2 f

1 1 2 2
f

1 2

m v m v m m v
m v m v

v
m m

+ = +
+

=
+

 

We known the magnitude of all the velocities involved, but not their relative orientation. We can find this by 

taking the scalar product of the final velocity with itself: 

( )
2 2 2 2

2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 1 2
f f f 2

1 2 1 2 1 2

2m v m v m v m v m v m v m m v v
v v v

m m m m m m
⎛ ⎞ ⎛ ⎞+ + + + ⋅

⋅ = = ⋅ =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠ +
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Using the definition of a scalar product, 1 2 1 2 cos ,v v v v θ⋅ =  the angle between 1v  and 2v  can be found. 

EVALUATE With m1 = m2 = m and v1 = v2 = v = 2vf, the above equation can be simplified to 

( )
2 2 2 2 2 2 2

2
2

2 cos 1 1 cos
4 24
v m v m v m v v

m
θ θ+ +

= = +  

Therefore, the angle between the two initial velocities is 

1acos 120
2

θ −⎛ ⎞= = °⎜ ⎟⎝ ⎠
 

ASSESS To see that the result makes sense, suppose 1v  makes an angle 60− °  with +x and 2v  makes an angle 

60+ °  with +x. The y component of the total momentum cancels. But for the x component, we have 

( ) ( ) ( )cos 60 cos 60 fmv mv m m v− ° + ° = +  

Solving for vf, we get vf = v/2, which confirms the result obtained above. 

 66. INTERPRET This is a one-dimensional problem that involves an elastic collision between two particles, so 

conservation of momentum and of total mechanical energy apply. We can use these principles to find the mass and 

final velocity of the non-proton particle.  

DEVELOP Because this is an elastic collision in one-dimension, we can apply Equation 9.15a and 9.15b to find 

the mass and velocity of the second particle. For this problem, the pre-collision velocities are v1i = 6.90 Mm/s and 

v2i = –2.80 Mm/s, and the post-collision velocity of the proton is 1f 8.62 Mm/sv = − . The known mass is m1 = 1 u. 

We can solve Equation 9.15a for the m2, which gives 

( )1 1i 1f
2

1f 1i 2i2
m v v

m
v v v

−
=

+ −
 

We can then insert the result of this calculation into Equation 9.15b to find v2f. 

EVALUATE Inserting the given quantities into the expression above for the mass of the unknown particle gives 

( )
( ) ( )2

6.90 Mm/s 8.62 Mm/s
1 u 4 u

8.62 Mm/s+6.90 Mm/s 2 2.80 Mm/s
m

⎡ ⎤− −
= =⎢ ⎥− − −⎣ ⎦

 

Inserting this result into Equation 9.15b gives 

( ) ( )2f 1i 2i
2 3 2 36.90 Mm/s 2.80 Mm/s 1.08 Mm/s
5 5 5 5

v v v= + = + − =  

ASSESS Because the second particle is more massive, the proton gains momentum in the collision. The alpha 

particle, however, loses momentum. 

 67. INTERPRET The one-dimensional collision in this problem is elastic, so both momentum and energy are 

conserved. We are asked to find the ratio of the two masses if the one that is initially at rest acquires, after the 

collision, half of the kinetic energy that the other had before the collision. 

DEVELOP Momentum is conserved in this process. In this one-dimensional case, we may write 

1 1i 2 2i 1 1f 2 2fm v m v m v m v+ = +  

Since the collision is completely elastic, energy is conserved: 
0

2 2 2 2
1 1i 2 2i 1 1f 2 2f

1 1 1 1
2 2 2 2
m v m v m v m v

=

+ = +  

Using the two conservation equations, the final speeds of m1 and m2 are (see Equations 9.15a and 9.15b): 

1 2 2 1 2 1
1f 1i 2i 2f 1i 2i

1 2 1 2 1 2 1 2

2 2
and

m m m m m m
v v v v v v

m m m m m m m m
− −

= + = +
+ + + +

 

Given that v2i = 0, the above expressions may be simplified to  

1 2 1
1f 1i 2f 1i

1 2 1 2

2m m m
v v v v

m m m m
−

= =
+ +
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Now, if half of the kinetic energy of the first object is transferred to the second, then  
2

21 1i
2f 1i 2 1 1i

1 2

21 1 1
2 2 4

m v
K K m m v

m m
⎛ ⎞

= ⇒ =⎜ ⎟+⎝ ⎠
 

EVALUATE The above equation can be further simplified to  

( )
2

2 1 1
1 2 1 2

2 2

8 8 1
m m

m m m m
m m

⎛ ⎞ ⎛ ⎞
= + → = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

The resulting quadratic equation, 2 2
1 1 2 26 0m m m m− + =  has two solutions:  

( ) ( )
2

11 2
2

5.83
3 8

5.83

m
m m

m−

⎧⎪= ± = ⎨
⎪⎩

 

Because the quadratic equation is symmetric in m1 and m2, one solution equals the other with m1 and m2 

interchanged. Thus, one object is 5.83 times more massive than the other. 

ASSESS To check that our answer is correct, let’s calculate the kinetic energy of the particles after the collision. 

Using m1 = 5.83m2, we find  
2 2

2 21 1i 1 1
2f 2 2f 2 1i

1 2 1 1

2
2 21
1i 1 1i 1i

2 21 1 1
2 2 2 5.83 /5.83

1 2 1 1
2 5.83 1 1/5.83 4 2

m v m m
K m v m v

m m m m

m
v m v K

⎛ ⎞ ⎛ ⎞⎛ ⎞= = = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠+ +⎝ ⎠ ⎝ ⎠

⎛ ⎞= = =⎜ ⎟⎝ ⎠+

 

as expected. 

 68. INTERPRET This is a one-dimensional, three-body problem that involves elastic collisions, so both conservation 

of momentum and energy apply. We need to find the final velocity of each block after the collisions. 

DEVELOP We can analyze separately the two collisions in this problem, and apply Equations 9.15 to each 

collision. For the first collision, between blocks A and B, we find (with vaf ≡ v) 
0

A B B A B
Af Ai Bi Ai

A B A B A B

2m m m m m
v v v v

m m m m m m

=− −
= + =

+ + +
 

0
B A A A

Bf,int Bi Ai Ai
A B A B A B

2 2m m m m
v v v v

m m m m m m

=−
= + =

+ + +
 

where vBf,int is the intermediate final velocity of block B. Block B then proceeds to collide with block C, and the 

final velocities from that collision are 
0

C C C
Bf Bf,int Ci Bf,int

B C B C B C

2B Bm m m m m
v v v v

m m m m m m

=− −
= + =

+ + +
 

0
C B B B

Cf Ci Bf,int Bf,int
C B A B A B

2 2m m m m
v v v v

m m m m m m

=−
= + =

+ + +
 

EVALUATE Inserting the masses of the blocks mA = m, mB = 2m, and mC = m, and recalling that vAf ≡ v, we find 

Af Ai
2 1
2 3

m mv v v
m m

−= = −
+

 

Bf,int Ai
2 2

2 3
mv v v

m m
= =

+
 

Bf Bf,int Ai
2 1 2 2
2 3 3 9
m mv v v v
m m

− ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠+
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B
Cf Bf,int Ai

A B

2 4 2 8
2 3 9

m mv v v v
m m m m

⎛ ⎞= = =⎜ ⎟⎝ ⎠+ +
 

ASSESS We can verify that momentum is conserved in this process: 

( )Ai Ai Ai Ai Ai Ai
1 2 8 3 4 82
3 9 9 9 9 9

mv mv mv mv mv mv⎛ ⎞ ⎛ ⎞= − + + = − + + =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

 69. INTERPRET We are asked to derive Equation 9.15b which we can do using conservation of momentum. In 

addition, since Equation 9.15b describes an elastic collision, conservation of kinetic energy also applies. 

DEVELOP Use conservation of momentum,  

1 1i 2 2i 1 1f 2 2f .m v m v m v m v+ = +  

 Because this is an elastic collision, kinetic energy is also conserved, so  

2 2 2 2
1 1i 2 2i 1 1f 2 2f

1 1 1 1 .
2 2 2 2
m v m v m v m v+ = +  

Use these two equations to solve for v2f. Much of this problem is done already in Equations 9.12a through 9.14. 

EVALUATE First solve Equation 9.14 for v1f to get 1f 2f 2i 1i .v v v v= + −  When we substitute this result into 

Equation 9.12, using the sign of v to denote the direction, we obtain ( )1 1i 2 2i 1 2f 2i 1i 2 2f .m v m v m v v v m v+ = + − +  

Solving this for v2f gives 

( )1 1i 2 2i 1 2i 1 1i 1 2 2f

1 2 1
2f 1i 2i

1 2 1 2

2
m v m v m v m v m m v

m m m
v v v

m m m m

+ = − + +
−

= +
+ +

 

ASSESS Our result agrees with Equation 9.15b, as expected. 

 70. INTERPRET This two-dimensional, two-body problem involves conservation of momentum and energy because 

the collision is elastic. We are to show that a collision that is not head-on will result in the final velocities being 

perpendicular.  

DEVELOP With one of the bodies initially at rest, conservation of energy gives 

1i 1f 2fp p p= +  

and conservation of energy gives [using K = p2/(2m)] 
2 2 2
1i 1 1f 1 2f 2

2 2 2
1i 1f 2f

2 2 2p m p m p m
p p p

= +

= +
 

where the second line uses the fact that the objects have equal mass. These two expressions for 2
1ip  can be equated 

to find the angle between the resulting momentum vectors. 

EVALUATE Equating the two expressions above for 2
1ip  gives 

2 2 2
1f 2f 1f 2f
2 2 2 2
1f 2f 1f 1f 2f 2f

1f 2f

| |

2
0 2

p p p p
p p p p p p

p p

+ = +

+ = + ⋅ +
= ⋅

 

Recalling that the scalar product is defined as 1f 2f 1f 2f cosp p p p θ⋅ = , we see that the angle θ = 90°, unless p1f = 0, 

as for a head-on collision. 

ASSESS You can verify this result on a pool table. 

 71. INTERPRET The two-dimensional problem involves an elastic collision between a proton and an initially 

stationary deuteron. Given the angle between their final velocities, we are to find the fraction of kinetic energy 

transferred from the proton to the deuteron in the process. 

DEVELOP Using the coordinate system shown in the sketch below (the deuteron’s recoil angle θ2f is negative), the 

components of the conservation of momentum equations for the elastic collision become  
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p pi p pf 1f d df df

p pf pf d df df

cos cos

0 sin sin

m v m v m v
m v m v

θ θ
θ θ

= +

= +
 

In addition, conservation of energy gives us 

2 2 2
p pi p pf d df

1 1 1
2 2 2
m v m v m v= +  

so the fraction of initial kinetic energy transferred to the deuteron is 
2 2

pf pfdf df

pi pi pi pi

1 1d

p

K vK m v
K K m v v

⎛ ⎞ ⎛ ⎞
= − → = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
EVALUATE With md = 2mp, the conservation equations become 

pi pf pf pf pf

pf pf df df

2 2 2
pi pf df

cos 2 cos

0 sin 2 sin

2 .

v v v
v v

v v v

θ θ
θ θ

= +

= +

= +

 

To find the final velocities, eliminate θ2f from the first and second equations and v2f from the third to get 

( )2 2 2 2 2 2 2 2
pi pi pf pf pf df df df df pi pf2 4 sin cos 4 2 2v v v v v v v vθ θ θ− + = + = = −  

This results in a quadratic equation for vpf : 
2 2
pf pi pf pf pi3 2 cos 0,v v v vθ− − =  with positive solution  

( )2
pf pi pf pf pi

1 cos cos 3 0.902
3

v v vθ θ= + + =  

where we have used θ1f = 37°. From the kinetic energy equation, we have 2 21
df pi pf pi2 ( ) 0.305 ,v v v v= − =  and 

from the transverse momentum equation, we have 

( )
( )

pipf1 1
df

df pi

0.902 sin 37sin 37
sin sin 62.7

2 2 0.305

vv
v v

θ − −
⎛ ⎞− °− °⎛ ⎞

= = = − °⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

From either vpf or vdf, the fraction of transferred kinetic energy is found to be 

( )
2

2pfdf df

pi pi pi

1 1 1 0.902 18.6%
vK K

K K v
⎛ ⎞

= − = − = − =⎜ ⎟
⎝ ⎠

 

ASSESS The fraction of energy transfer can also be obtained as  

( )
2

2df d df

pi p pi

2 0.305 0.186 18.6%
K m v
K m v

⎛ ⎞
= = = =⎜ ⎟

⎝ ⎠
 

Here, one does not need both final velocities to answer this question, but a more complete analysis of this collision, 

including the deuteron recoil angle, is instructive. 

 72. INTERPRET This two-dimensional problem involves a three-body, totally elastic collision. We can therefore 

apply conservation of total linear momentum and conservation of energy to find the velocities of the three balls 

after the collision.  

DEVELOP Because the balls are the same size, the direction of the impact force is at ±30° with respect to the 

horizontal (see figure below). By symmetry, balls B and C receive the same impulse, so their horizontal velocity 
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components and the magnitude of their velocities must be equivalent. Thus, vC = vB and B, B,
ˆ ˆ

C x yv v i v j= − . 

Applying conservation of momentum in the î  direction therefore gives 

( ) ( )0 A B C

0 A B

cos 30 cos 30

3

mv mv mv mv

v v v

= + ° + °

= +
 

Applying conservation of energy and using the result from conservation of momentum and the result that vC = vB 

gives 

2 2 2 2
0 A B C

2 2 2
0 A B

2
2 2 0
0 A

1 1 1 1
2 2 2 2

2

2
3
A

mv mv mv mv

v v v

v v
v v

= + +

= +

−⎛ ⎞= + ⎜ ⎟⎝ ⎠

 

which we can solve for vA. Once we know vA, we can use the expression above from conservation of momentum to 

find vB (and vC). 

Ball A

Ball B

2R

2R

2R

Ball C

308
608

608
308

î

ĵ

 
EVALUATE Solving the expression above for vA gives 

( )

( )

22 2
0 A 0 A

0 A

2
3

v v v v

v v

− = −

− ( ) ( ) 2
0 A 0 A

2
3

v v v v+ = −

0
A 5

v
v = −

 

Because vA has only a horizontal component, we have ( )0
ˆ5v v i= . Using the result for vA to find vB gives 

2
2 20
0 B

0
B

2
25

2
3

5

v
v v

v
v

= +

= ±
 

so in component form we have 

( ) ( )B B B

0 0

0 0

ˆ ˆcos sin

2 3 3 2 3 1ˆ ˆ
5 2 5 2

3 3ˆ ˆ
5 5

v v i v j

v i v j

v i v j

θ θ= +

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

From the symmetry arguments above, we now have  

C 0 0
3 3ˆ ˆ
5 5

v v i v j
⎛ ⎞⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

ASSESS We can check that momentum and energy are conserved. For momentum, we have 
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0 A B C

0 0 0 0 0 0

0

1 3 3 3 3ˆ ˆ ˆ ˆ ˆ ˆ
5 5 5 5 5
ˆ

mv mv mv mv

v i v i v i v j v i v j

v i

= + +

= − + + + −

=

 

and for energy, we have 

2 2 2 2
0 A B C

2
2 2 20
0 0 0

2
0

1 1 1 1
2 2 2 2

9 3 9 3
25 25 25 25 25

mv mv mv mv

v
v v v

v

= + +

⎛ ⎞ ⎛ ⎞= + + + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

=

 

 73. INTERPRET This problem asks us to find an expression for the impulse imparted by a time-varying force.  

DEVELOP The impulse of a variable force requires integration (Equation 9.10b): ( ) .J F t dt= ∫  In this case, we'll 

need to use sin cos .x dx x= −∫  

EVALUATE The force and the impulse are one-dimensional, so we will neglect the vector formalism. Evaluating 

the integral over the given time interval: 

 [ ]
/

/ 0 0 0
00

0

2
sin cos cos cos 0

a
a F F F

J F at dt at
a a a

π
π

π= = = − =∫  

Notice that the argument of the sine and cosine functions is not degrees but radians, so cos 1.π = −  

ASSESS The units are N s,⋅  as they should be for the impulse. 

 74. INTERPRET This two-dimensional two-body problem involves an inelastic collision, so we can apply 

conservation of linear momentum, but not conservation of energy. We can apply conservation of momentum to 

find the velocity of the ozone. 

DEVELOP For this totally inelastic collision, momentum conservation gives 

( )1 1 2 2 1 2 f

1 1 2 2
f

1 2

m v m v m m v
m v m v

v
m m

+ = +
+

=
+

 

The velocities of the oxygen molecule (denoted with subscript 1) and oxygen atom (subscript 2) are 

( )
( ) ( ) ( ) ( ) ( )

1

2

ˆ580 m/s
ˆ ˆ ˆ ˆ870 m/s cos 27 sin 27 775 m/s 395 m/s

v i

v i j i j

=

⎡ ⎤= ° + ° = +⎣ ⎦
 

EVALUATE Substituting the above expressions for 1v  and 2v  into the first equation, we obtain 

( ) ( )

( ) ( ) ( )

( ) ( )

1 21 1 2 2
f 1 2

1 2

32 u 16 u 2 1
32 u 16 u 3 3

2 1ˆ ˆ ˆ580 m/s 775 m/s 395 m/s
3 3

ˆ ˆ645 m/s 132 m/s

v vm v m v
v v v

m m

i i j

i j

++
= = = +

+ +

⎡ ⎤= + +⎣ ⎦

= +

 

ASSESS The magnitude and direction of fv  are 658 m/sv =  and 11.5 .xθ = °  The result is reasonable since we 

expect the angle to be between 0 and 27 .°  

 75. INTERPRET This one-dimensional two-body problem involves an inelastic collision so we can apply conservation 

of momentum but not conservation of energy. We will also need to apply some kinematics to find the maximum 

height and the speed with which the combination hit the ground.  
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DEVELOP By conservation of momentum, we can equate the momentum of the two-body system before and after 

the Frisbee-mud collision. This gives 

( )m i F m fm v m m v= +  

Using Equation 2.11, we find the velocity vm,i with which the mud hits the Frisbee to be 

( ) ( ) ( ) ( )22 2
m,i m,0 02 17.7 m/s 2 9.8 m/s 7.65 m 1.23 m 13.69 m/sv v g y y= − − = − − =  

Therefore, the initial velocity of the mud-Frisbee combination is 

( ) ( )m i
f

F m

0.240 kg 13.7 m/s
9.288 m/s

0.240 kg 0.114 kg
m v

v
m m

= = =
+ +

 

upward. Use this result in the kinematic Equation 2.11 to find the maximum height and the speed upon hitting the 

ground for the mud-Frisbee combination. 

EVALUATE (a) The maximum height reached is 

( ) ( )
( )

2 22 2
f

0 2

0.00 m/s 9.28 m/s
7.65 m 8.10 m

2 2 9.8 m/s
v v

y y
g

−−
= + = − =

−
 

(b) An object falling from this height, unimpeded by air resistance or other obstacles, would attain a speed of 

( ) ( )22 2 9.8 m/s 8.10 m 12.6 m/sv gy= ± = − = −  

when it reaches the ground (where we have retained the negative sign to indicate the velocity is downward). 

ASSESS Notice that we retained extra significant figures for the intermediate results. 

 76. INTERPRET This one-dimensional two-body problem involves an elastic collision and kinematics. We can apply 

conservation of energy and momentum to find the height the small ball rebounds after being dropped together with 

a larger ball and rebounding from the ground.  

DEVELOP The balls reach the ground, after a vertical fall through a height h, with speed 0 2v gh=  (see 

Equation 2.11). Assume that they undergo an elastic head-on collision, with the large ball M rebounding from the 
ground with initial velocity v2i = v0 (positive upward), and the small ball still falling downward with initial velocity 
v1i = –v0. Equation 9.15a gives the final velocity of the small ball as 

( )0 0 0 0
2 3

3f
m M M M mv v v v v
m M m M m M

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + = ≈⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠+ + +
 

since .M m>>  Once vf is known, the height it rebounds can be readily calculated by using energy conservation (or 

kinematic Equation 2.11). 

EVALUATE Conservation of total mechanical energy requires that 2
f2 ,fmv mgh=  so 

( )2 22
0 0f

f

3
9 9

2 2 2
v vv

h h
g g g

= = = =  

or about nine times the original height.  

ASSESS This demonstration, sometimes called a Minski cannon, is striking. Try it with a new tennis ball and 

properly inflated basketball. 

 77. INTERPRET This one-dimensional, two-body problem involves a collision that is neither elastic nor inelastic, so 

we can apply conservation of momentum. Given that we are told the amount of kinetic energy that is lost in the 

collision, we can apply conservation of energy as well. We can use these principles to find the velocity of the 

wreckage.  

DEVELOP Let the initial velocity car 1 be v, and that of cars after the wreckage be v1 and v2. Conservation of 

momentum requires that 

1 2

1 2

mv mv mv
v v v

= +
= +
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and conservation of energy gives 

2 2 2 2
1 2 1

2 2 2
1 2

1 1 1 5 1
2 2 2 18 2
13
18

mv mv mv mv

v v v

⎛ ⎞= + + ⎜ ⎟⎝ ⎠

= +
 

Solve these two equations for the final velocities. 

EVALUATE Solving the expression from conservation of energy for v1,f gives 

2 2
1 2

13
18

v v v= ± −  

Taking the positive square root (the negative solution simply corresponds to the cars moving in the opposite 

direction) and using the result from conservation of momentum eliminate v2,f gives 

( )

( )

22
1 1

2 2 2 2
1 1 1

2 2
1 1

1 1

13
18

13 2
18

5
2 0

18
1 5

2 0
6 6

v v v v

v v v vv v

v vv v

v v v v

= − −

= − − +

+ + =

⎛ ⎞ ⎛ ⎞− − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

which has the solutions v1 = 5v/6 or v/6. Because v1 < v2 (because car 1 is behind car 2 after the wreck), we chose v1 

= v/6, which leads to v2 = 5v/6. 

ASSESS We can easily verify that conservation of momentum and energy (including the converted kinetic energy) 

is respected with this solution. 

  78. INTERPRET This problem involves kinematics, conservation of momentum, and conservation of energy. A small 

block slides down a frictionless incline and collides on a horizontal frictionless surface with a second, larger block 

in an elastic collision. The smaller block rebounds and travels back up the incline a certain distance, then slides 

down the incline and catches up to the larger block for a second collision. We are asked to calculate the time that 

elapses before the two blocks collide for the second time. 

DEVELOP From conservation of energy, and assuming a smooth transition from incline to horizontal surface, the 

small block has speed 1 2iv gh=  when the first collision occurs. Use Equation 9.15a, with m2 = 4m1 and v2i = 0 to 

find the speeds of the blocks immediately after the first collision (at t = 0): 

1 2
1f 1i 1i 1i

1 2

1
2f 1i 1i

1 2

1 4 3  
1 4 5

2 2
5

m m
v v v v

m m

m
v v v

m m

⎛ ⎞− −⎛ ⎞= = = −⎜ ⎟⎜ ⎟ ⎝ ⎠+ +⎝ ⎠

⎛ ⎞
= =⎜ ⎟+⎝ ⎠

 

The larger block moves with constant speed of v2f = 2v1i/5 to the right; its position, relative to the bottom of the 

incline, is 

( )2,f 2, 2f 1,i
21.4 m
5ix t x v t v t= + = +  

The smaller block takes time ( ) ( ) 1

1 1,i1.4 m 3 5t v
−

=  to get back to the incline, and ( ) 1
2 02 3 5t v a−= to go up and 

down the incline, where ( )sin 30 /2.a g g= ° =  (Use Equation 2.7, with initial speed 1,i3 5v−  up the incline and 

final speed 1,i3 5v−  down the incline, to calculate t2.) The small block then proceeds with constant speed in 

pursuit of the larger block, its position being 

( ) ( )1,f 1,i 1 2
3
5x t v t t t= − −  for 1 2t t t≥ +  
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The blocks collide for the second time when ( ) ( )1 2x t x t= . 

EVALUATE The condition ( ) ( )1 2x t x t=  implies  

( )1,i 1 2 1,i
3 21.4 m
5 5
v t t t v t− − = +  

Solving for t, we find 

( ) ( )
( ) ( )1, 1 2

1, 1 2
1,

5 1.4 m 3 5
7 m 3

i
i

i

v t t
t v t t

v

⎡ ⎤+ +⎣ ⎦= = + +  

Numerically, we have ( ) ( )2
0 2 9.8 m/s 0.25 m 2.21 m/sv = = , which gives 

( )
( )
( )

( ) ( ) ( )

1

1,i 1,i
2 2

1.4 m 1.05 s
3 2.21 m/s 5
6 12 12 2.21 m/s

0.542 s
5 5 5 9.8 m/s

7 m 2.21 m/s 3 1.05 s 0.542 s 7.95 s

t

v v
t

a g

t

= =

= = = =

= + + =

 

ASSESS This problem is rather involved. However, the validity of our result can be checked by substituting the 

numerical values for t1 and t2 back to the equations in the intermediate steps.  

 79. INTERPRET This two-dimensional two-body problem involves an inelastic collision. In the vertical direction, the 

motion is governed by the force of gravity, and in the horizontal direction, we can use conservation of momentum 

to find the horizontal velocity of the combined bodies after the collision. We will need to use kinematic equations 

to find the velocities and positions at the various points along the trajectories. 

DEVELOP The peak of the projectile 1 is at half its range, which is given by Equation 3.15. Thus, the two 

projectiles collide at a horizontal position, measured from the launch point of projectile 1, of 

( ) ( )
( ) ( )

2
2
0 2

380 m/s1 sin 2 sin 110 6.92 km
2 2 9.8 m/s

x v
g

θ= = =  

Just before the collision, the horizontal velocity of projectile 1 is ( ) ( )1, 1 cos 380 m/s cos 55 218 m/sxv v θ= = = . 

From conservation of linear momentum, we know that the horizontal velocity of the combined projectile is  

( )1 1, 2 2, 1 2

1,
2 1

2,

x x x

x x

x x

m v m v m m v
v v

m m
v v

+ = +
−

=
−

 

We also know that the combined projectile travels to 9.6 km from the launch point before hitting the ground, so  

0

0 9.6 km 6.92 km
x

x

x x v t
x x

v
t t

= +
− −

= =
 

Finally, we can find t and thus solve for m2 using the kinematic Equation 2.7 (v = v0 + at, with a = –g and v = 0). 

This gives 

0

0

0 v gt
v

t
g

= −

=
 

EVALUATE Evaluating the expression for vx gives 

( ) ( )2

0

9.6 km 6.92 km 9.8 m/s9.6 km 6.92 km 84.3 m/s
380 m/sxv g

v
−−

= = =  

Inserting this result into the expression for m2 gives 
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( )1,
2 1

2,

84.3 m/s 218 m/s14 kg 8.3 kg
140 m/s 84.3 m/s

x x

x x

v v
m m

v v
− −= = =
− − −

 

ASSESS The time required for the two to fall to the ground is t = v0/g = (380 m/s)/(9.8 m/s) = 31.8 s. We find that 

m2 < m1, which makes sense because the combined projectile continues to travel in the direction at which m1 was 

initially traveling. 

 80. INTERPRET We are told the force that brings a car to rest in a collision. From this we will calculate the impulse 

and the average force. 

DEVELOP The force exerted by the barrier wall on the car is one-dimensional, so the impulse of the collision is 

( ) ,J F t dt= ∫ where the integral evaluated over the collision duration, .tΔ  Once we have the impulse, the average 

force is simply / ,F J t= Δ from Equation 9.10a. And finally, the mass can be found through Newton's second law 

( )/ ,m F a=  with the acceleration determined from the car's initial speed. 

EVALUATE (a) Evaluating the integral over the given time interval:  

( ) ( ) ( ) ( )4 3 2

1 1 1 14 3 2 5 4 3 2
5 4 3 20

GN GN MN MN
5 4 3 2s s s s

8.86 3.27 362 12.5
0.2s 0.2s 0.2s 0.2s 25.6 kN s

5 4 3 2

t
J at bt ct dt dt a t b t c t d t

Δ
= + + + = Δ + Δ + Δ + Δ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −
= + + + = ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫
 

(b) As argued above, the average force is just the impulse divided by the time interval: 

 25.6 kN s 128 kN
0.2 s

JF
t

⋅= = =
Δ

 

(c) We're told the car was originally travelling at 50 km/h before coming to a rest in 200 ms, so the magnitude of 

the average acceleration is 

 250 km/h 1 m/s 69 m/s
0.2 s 3.6 km/h

va
t

Δ ⎛ ⎞= = =⎜ ⎟⎝ ⎠Δ
 

From this, the mass must be  

 2

128 kN 1900 kg
69 m/s

Fm
a

= = =  

ASSESS Car's vary in mass from about 1000 to 2000 kg, so the answer fits. The average acceleration is equal to 

about 7g, which sounds about right for such a collision. 

 81. INTERPRET We are asked to find the peak in the force for the collision in the previous problem. 

DEVELOP Let's simplify the force equation slightly by substituting in /x t t= Δ : 

 ( ) ( )4 3 214.2 26.2 14.5 2.50  MNF x x x x x= − + − +  

This function equals zero at 0x = and 1,x = which corresponds to the beginning and end of the car's collision with 

the barrier. The force is positive between these two points, so there is a peak in the force somewhere 

between 0x = and 1,x =  just as we'd expect.  

EVALUATE At the peak, the derivative should be zero: 

 3 256.8 78.6 29.0 2.50 0dF x x x
dx

= − + − + =  

where we have dropped the units for the time being. Dividing through by the x3-coefficient gives a function we'll 

call ( )f x : 

 ( ) 3 21.38 0.511 0.0440 0f x x x x= − + − =  

Solving a cubic like this is rather involved, but we know that there is a root between 0x = and 1,x = so we can 

use trial and error to find where the cubic crosses the x-axis. We first note that ( )f x  is negative at 0x = and 

positive at 1.x =  If we try 0.5,x = we get a negative result, so the crossing point must be to the right of 0.5.x =  

So we check and see that ( )0.75 0,f < but ( )0.85 0.f >  Therefore the root is in between these points. This can be 
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done several times to hone in on 0.825,x = which is perhaps sufficiently accurate for our purposes. In terms of the 

original variables, the peak occurs approximately at 165 mst =  with a value of 327 kN.F =  

ASSESS In the previous problem, the average force was found to be 128 kN. The peak value we found above is 2.5 

times the average, which seems reasonable. 

 82. INTERPRET The problem is about finding the fraction of the initial kinetic energy transferred from one block to 

the second block in the course of a collision. The fraction is related to the mass ratio. 

DEVELOP With 2i 0,v = Equations 9.15a and 9.15b become 

 1 2 1
1f 1i 2f 1i

1 2 1 2

2m m m
v v v v

m m m m
⎛ ⎞ ⎛ ⎞−

= =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
 

The fraction of the initial kinetic energy transferred to 2m is 

 
21

2 2f2f 2
21

1i 1 1i2

m vK
K m v

=   

EVALUATE Substituting the expression for 1fv into the equation above, we obtain 

 
( )

( )
( )

2
1 22f 2 1 1 2

2 2
1i 1 1 2 1 2 1 2

4 /2 4
1 /

m mK m m m m
K m m m m m m m

⎛ ⎞
= = =⎜ ⎟+⎝ ⎠ + +

 

We plot this ratio in the figure below. 

 
ASSESS The fraction of energy transfer reaches a maximum of unity when the mass ratio equals one. This 

corresponds to Case 2 in Section 9.6 where 1 2 .m m= The first object stops completely and transfers all its energy 

to the second object, which moves on with the initial speed ( )2f 1i .v v=  

 83. INTERPRET This problem is like the previous problem where we looked at the transfer of kinetic energy from a 

moving block to an initially stationary block. Here, we show that the fraction of energy transferred is independent 

of which block is the moving one and which is the stationary one.  

DEVELOP We can use the result from the previous problem to write the fraction of the initial energy in the 

moving block that is transferred to the initially stationary block:  

 
( )

( )
1 2stat

2
mov 1 2

4 /

1 /

m mK
K m m

=
+

  

where we assume in this case that the moving block has mass 1m  and the stationary block has mass 2 .m  

EVALUATE If instead 1m is the stationary block, and 2m is the moving block, then the fraction becomes  

 
( )

( )
( )

( )
( )
( )

( )
( )

2
2 1 2 1 1 2 1 2stat

2 2 2 2
mov 2 1 2 1 1 2 1 2

4 / 4 / / 4 /

1 / 1 / / 1 /

m m m m m m m mK
K m m m m m m m m

= = =
+ + +

 

But this is the same as before, so the energy transfer is independent of which mass is initially stationary. 

ASSESS As an example of this independence, one can imagine a light block colliding with a heavy stationary 

block (like the ping pong ball and bowling ball collision in Section 9.6). After the collision, the heavy block barely 

moves, whereas the light block ricochets backward with essentially the same speed. In other words, very little 

energy is transferred ( )stat mov/ 0 .K K ≈  Then imagine the blocks switch places, with the light block initially at 

rest. In this case, the heavy block plows into the light block and knocks it forward. But the heavy block keeps 

moving with pretty much its initial speed, so again not much energy is transferred ( )stat mov/ 0 .K K ≈  
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 84. INTERPRET We are to find the center of mass of a semicircular wire with radius of curvature R. From Figure 9.6, 

we see that the wire is symmetric left-to-right, so the center of mass is along the centerline. We need to find the 

distance of the center of mass above the center of the semicircle. We would expect that it’s somewhere over 

halfway up. 

DEVELOP Use the coordinate system defined in the figure below. The equation for center of mass is (Equation 

9.4) 

cm
1r rdm
M

= ∫  

Because the system is left-right symmetric, we need only the vertical component y of cmr , so the equation for 

center of mass reduces to  

cm
1y ydm
M

= ∫  

The mass per unit length of the wire is ( ) ( )1 12 2 2M C M R M Rλ π π− −= = = , so dm = λRdθ and y = Rsinθ. 

 
EVALUATE We integrate over the entire wire, from θ = 0 to θ = π 

( )
2

cm
0 0 0

2

1 1 sin sinRy ydm R Rd d
M M M

R

π π πλθ λ θ θ θ= = =

=

∫ ∫ ∫
M
Rπ( )

M
( )0

2cos

0.637

R

R

π
θ

π
− =

=

 

ASSESS This is a bit short of 2/3 of the way up, which is what we expected. 

 85. INTERPRET We find the center of mass of a slice of pizza with central angle θ and radius R. We would expect that 

it’s along the center of the slice, and closer to the crust than to the tip. 

DEVELOP The equation for center of mass is 1
cm ,Mr rdm= ∫ which in two dimensions can be written out as: 

 ( )cm cm cm
1 1 1ˆ ˆ ˆ ˆ ˆ ˆr xi yj dm xdm i ydm j x i y jM M M= + = + = +∫ ∫ ∫  

We set up our coordinate system such that the slice is symmetric about the y axis, see the figure below. In this case, 

cm 0.y =  As for cm ,x we use cosx r φ=  and integrate over r from 0 to R, and over φ from / 2θ−  to / 2,θ where 

the angles are in radians.  

dm

u

[

x

r

 
The infinitesimal mass element, ,dm is equal to ,dA rdrdμ μ φ=  where μ is the mass per unit area. Since the slice 

is uniform, the density is constant:  
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( ) ( ) 22

2
/ 2

M M M
A RR

μ
θθ π π

= = =  

One can check these values by verifying that .M dAμ= ∫   

EVALUATE Evaluating the integral for the x-component of the center of mass gives 

 
( )

[ ] ( )

/ 2

cm 2/ 2 0

/ 21 3
2 3 / 20

1 2cos

2 4sin sin / 2
3

R

R

Mx r rdrdM R
Rr

R

θ

θ

θ

θ

φ φ
θ

φ θ
θθ

−

−

⎛ ⎞= ⎝ ⎠

⎡ ⎤= =⎣ ⎦

∫ ∫
 

ASSESS We can check this answer by letting / 4,θ π= which corresponds to a 1/8th slice of pizza. In that case, 

cm 0.65 ,x R=  which matches our original prediction that the center of mass will be closer to the outer crust than to 

the tip. If instead 2θ π=  (the full pizza), then the center of mass is at cm 0,x =  as we would expect.  

 86. INTERPRET We use conservation of momentum and of energy to calculate the kinetic energy of a pellet that goes 

through a ballistic pendulum. The pellet has known initial kinetic energy, and we also know the final potential 

energy of the pendulum, so we can find the final kinetic energy of the pellet. 

DEVELOP We find the initial speed of the pellet from its initial kinetic energy Ki = 3.25 J and mass m = 052 × 

10–3 kg. We then work backward from the maximum potential energy of the pendulum to find the speed of the 

pendulum. Knowing this potential energy is U = Mgh, where the pendulum mass is M = 0.400 kg and the height is 

h = 5 × 10–4 m, we can find the initial kinetic energy 2
p 2K Mv=  of the pendulum. This gives us the speed of the 

pendulum just after the collision. Next, we use conservation of momentum at the collision with the pendulum to 

find the pellet’s speed after the collision. Finally, we answer the question using 2
f f 2K mv= . 

EVALUATE The initial speed of the pellet is  

2
i i

i
i

1
2
2

K mv

K
v

m

=

=
 

The speed of the pendulum after the collision is found by 

U M= 1
2gh M= 2

p

p 2

v

v gh=
 

We use conservation of momentum at the collision to find the velocity of the exiting pellet: 

( ) ( ) ( )

i f p

i
f

2 3i
f 4 4

2
2

2 3.25 J2 0.40 kg2 2 9.8 m/s 50 10 m
5.2 10 kg 5.2 10 kg

35.7 m/s

mv mv Mv

K
m mv M gh

m

K Mv gh
m m

−
− −

= +

= +

= − = − ×
× ×

=

 

So the final kinetic energy is 

( ) ( )22 4
f f

1 1 5.2 10 kg 35.7 m/s 0.33 J
2 2

K mv −= = × =  

ASSESS Note that we can’t just use conservation of energy! Compare: 

i

2
f f f

3.25 J
1 0.332 J
2

E

E U K Mgh mv

=

= + = + =
 

Most of the kinetic energy is lost in the collision, because this is an inelastic collision.  
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 87. INTERPRET We use conservation of momentum to find the speed of an astronaut after she throws her toolbox 

away, and use this speed and the given distance to determine whether she reaches safety before her oxygen runs 

out. 

DEVELOP The mass of the astronaut is ma = 80 kg. The mass of the toolbox is mt = 10 kg. The initial speed of 

both is zero, so the final speed of the toolbox is vta = –8 m/s relative to the astronaut. We can use conservation of 

momentum to find the speed of the astronaut: 0 = mtvt + mava. Once we have this speed, we calculate how long it 

will take to travel a distance x = 200 m and hope that the answer is less than 4 minutes. 

EVALUATE First we find the speed of the toolbox relative to the rest frame: vt = va + vta. Next we plug this into the 

conservation of momentum equation: ( )t a ta a a0 m v v m v= + +  and solve for the astronaut’s speed:  

( )
( )

t a ta a a

t a t ta

t
a ta

t a

0

0.89 m/s

a

m v v m v

v m m m v

m
v v

m m

= + +

+ = −

⎛ ⎞
= − =⎜ ⎟+⎝ ⎠

 

The time it takes is 

200 m 225 s 3.75 min
0.89 m/sa

xt
v

= = = =  

ASSESS She makes it with 15 seconds to spare.  

 88. INTERPRET The Sun will rotate around the center of mass of the solar system, so this problem is essentially 

asking how far the Sun's center is from this center of mass. For the solar system, we will only consider the Sun and 

Jupiter and neglect the mass contribution from the rest of the planets.  

DEVELOP We can think of the Sun and Jupiter as two ends of a barbell, like that in Example 9.1. The center of 

mass lies on the line between the two objects, so we can drop the vector notation from Equation 9.2: 
1

cm .i iMr m r= ∑  Let's take the center of the Sun as our origin, so that the Sun contribution is zero ( )S 0 .r =  The 

only term in the sum is that for Jupiter:  

 ( ) [ ] ( )
J

cm J J S S J
S J S J

1 .
m

r m r m r r
m m m m

= + =
+ +

 

EVALUATE From Appendix E, the mass of Jupiter is 271.90 10 kg× and its orbital radius is 117.78 10 m.× The mass 

of the Sun is 301.99 10 kg.× Plugging these values in the above expression,  

 ( ) ( )
27

11 8
cm 30 27

1.90 10 kg 7.78 10 m 7.42 10 m
1.99 10 kg 1.90 10 kg

r ×
× = ×

× + ×
 

ASSESS This is only slightly larger than the radius of the Sun ( )8
S 6.96 10 m .R = ×  The actual distance between 

the Sun and the center of mass of the solar system is constantly changing since the planets are constantly moving 
relative to each other due to their orbital motion.  

 89. INTERPRET We're asked to find the total mass and the center of mass for a thin rod with non-uniform density. 

The density increases from zero at one end to a maximum at the other end, so we'd expect the center of mass to be 

closer to the denser end. 

DEVELOP We will have to integrate to find the total mass: tot .M dm dxμ= =∫ ∫ The limits of integration are 

between 0x =  and .x L=  Since the mass is distributed along one-dimension, the center of mass integral takes a 

similar from: 
tot tot

1 1
cm .M Mr xdm x dxμ= =∫ ∫   

EVALUATE (a) The mass integral gives 

 
1

tot 1 10 0
01 1

La aL L

a a

Mx M x MM dx dx
a aL L

μ
+

+ += = = =
+ +∫ ∫  

(b) Using the above result, the center of mass is 
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1 2

cm 1 10 0
tot 0

1 1 1 1
2 2

La aL L

a a

a Mx a x ar x dx dx L
M M a aL L

μ
+ +

+ +

+ + +
= = = =

+ +∫ ∫  

(c) If 0,a = the density is constant: / .M Lμ =  The total mass is M, and the center of mass occurs at 1
2 ,L  just as 

we would expect for a rod with uniform density. 

ASSESS For 1,a = the center of mass occurs at 2
3 ,L while for 2,a = it occurs at 3

4 .L  This agrees with our premonition 

that having the density get larger toward x L= will mean that the center of mass will be closer to that end. 

 90. INTERPRET We're asked to analyze the bouncing of a ball captured by a strobe camera.  

DEVELOP The picture shows that the ball bounces up to a lower height after each bounce.  

EVALUATE If the collisions with the floor were totally inelastic, then we'd expect the ball to stick to the floor after the 

first bounce, which it does not. To analyze better what does happen, let's divide up the velocity into its x and y 

components: ˆ ˆ.x yv v i v j= +  In terms of solely the vertical motion, the ball has a head-on collision with the ground. If 

this head-on collision were totally elastic, then the ball should bounce back in the opposite direction with the same speed 

it hit the ground with: f i .y yv v= − This follows from Case 1 in Section 9.6, where a small mass (the ball) collides with a 

much larger mass (the floor). If the ball has the same vertical speed after the collision, then by conservation of energy the 

ball should return to roughly the same height ( )2
yh v∝ after each bounce, which it does not. 

By elimination, the answer is (c). 

ASSESS We would say the collision with the ground is inelastic (just not "totally"), since some of the kinetic 

energy is lost to internal energy (heat) of the ball and the ground. 

 91. INTERPRET We're asked to analyze the bouncing of a ball captured by a strobe camera.  

DEVELOP Right before the second collision, the ball has kinetic energy 1 12 2
i i i2 2 ,x yK mv mv= + while after the 

collision, it has 1 12 2
f f f2 2 .x yK mv mv= + We argued in the previous problem that because the ball doesn't rebound to 

the same height, the vertical speed at ground level must be getting smaller after each collision ( )2 .yv gh=  If we 

just consider the motion in the vertical direction, the fraction of energy lost is: 

 f i

i iy

h hK
K h

⎛ ⎞ −Δ
=⎜ ⎟⎝ ⎠

 

EVALUATE With our fingers or with a small ruler, we can check that the peak height after the second collision is 

about 0.6 times the peak height before the collision. So by the equation above, the ball lost around 40% of its 

energy in the vertical direction. Assuming the loss in horizontal direction wasn't more than that, the fraction of the 

total energy lost is a little less than half. 

The answer is (b).  

ASSESS We've treated the components of kinetic energy separately: 1 2
2x xK mv=  and 1 2

2 .y yK mv= It should be 

noted that the two are not completely separate. If the ground were flat or if the ball were spinning, a collision could 

transfer energy in the vertical direction to energy in the horizontal direction, or vice versa. 

 92. INTERPRET We're asked to analyze the bouncing of a ball captured by a strobe camera.  

DEVELOP The vertical component of the velocity after a collision can be estimated by the height that the ball 

reaches at the top of the bounce: 2 .yv gh=  Since there are no horizontal forces acting on the ball while it's in the 

air, the horizontal component of the velocity between collisions is constant. It is equal to the distance, ,x  the ball 

travels horizontally divided by the time, t, that it remains airborne between collisions with the floor: 

 ( ) 82 22 /x
y

x x xg gv x
t hghv g

= = = =  

EVALUATE In the previous problem, we estimated that the height after a collision is 0.6 times the height before 

the collision, so the vertical component of the velocity is about 20% less after a collision. For the horizontal 

component, we roughly measure that the distance the ball travels after the second collision is about 0.8 times the 

distance before the collision. Therefore, the horizontal component of the velocity decreases by: 
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Therefore, the vertical component is more affected. 

The answer is (b).  

ASSESS We might have expected that the horizontal velocity remains roughly constant through the collision. The 

non-conservative forces that remove energy from the ball are likely to point in the vertical direction where the 

velocity goes through the biggest change.  

 93. INTERPRET We're asked to analyze the bouncing of a ball captured by a strobe camera.  

DEVELOP The way a strobe camera works is that it takes pictures at a set interval. So we can get a rough estimate 

for how long the ball was between collisions or in the midst of a collision by counting how many times the camera 

caught the ball in either setting.  

EVALUATE In the image, we count 7 times that the ball's picture was taken between the first and second collision. 

However, it appears that the ball's picture was taken only once during each collision. So the collision time is a tiny 

fraction of the time between collisions. 

The answer is (a). 

ASSESS This matches our experience that collisions are very short-lived events. 


